38 research outputs found

    Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB) cells that were already approved for therapeutic efficacy <it>in vivo</it>. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human <it>in vitro </it>model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells. These cells were incubated under an oxygen-reduced atmosphere (O<sub>2</sub>< 1%) for 48 hours. Subsequently, HUCB mononuclear cells (MNC) were added to post-hypoxic neuronal cultures. These cultures were characterized regarding to the development of apoptosis and necrosis over three days. Based on this we investigated the therapeutic influence of HUCB MNC on the progression of apoptotic cell death. The impact of HUCB cells and hypoxia on secretion of neuroprotective and inflammatory cytokines, chemokines and expression of adhesion molecules was proved.</p> <p>Results</p> <p>Hypoxic cultivation of neurons initially induced a rate of 26% ± 13% of apoptosis. Hypoxia also caused an enhanced expression of Caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Necrosis was only detected in low amounts. Within the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% ± 11% (p ≤ 0.001). Specific cytokine (VEGF) patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% ± 3%; p ≤ 0.001). In parallel, clustering of administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase of chemokines (CCL5; CCL3 and CXCL10).</p> <p>Conclusion</p> <p>We established an <it>in vitro </it>model of neuronal hypoxia that affords the possibility to investigate both, apoptotic neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective properties of HUCB cells.</p> <p>We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the upregulation of chemokines within the co-cultures.</p

    Interrelations between blood-brain barrier permeability and matrix metalloproteinases are differently affected by tissue plasminogen activator and hyperoxia in a rat model of embolic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In ischemic stroke, blood-brain barrier (BBB) regulations, typically involving matrix metalloproteinases (MMPs) and inhibitors (TIMPs) as mediators, became interesting since tissue plasminogen activator (tPA)-related BBB breakdown with risk of secondary hemorrhage was considered to involve these mediators too. Despite high clinical relevance, detailed interactions are purely understood. After a pilot study addressing hyperoxia as potential neuroprotective co-treatment to tPA, we analyzed interrelations between BBB permeability (BBB-P), MMPs and TIMPs.</p> <p>Findings</p> <p>Rats underwent embolic middle cerebral artery occlusion (eMCAO) and treatment with normobaric (NBO) or hyperbaric oxygen (HBO), tPA, tPA+HBO, or no treatment. BBB-P was assessed by intravenously applied FITC-albumin at 4 or 24 hours. MMP-2/-9 and TIMP-1/-2 serum levels were determined at 5 or 25 hours. Time point-corrected partial correlations were used to explore interrelations of BBB-P in ischemic regions (extra-/intravasal FITC-albumin ratio) and related serum markers. BBB-P correlated positively with MMP-2 and MMP-9 in controls, whereas hyperoxia led to an inverse association, most pronounced for HBO/MMP-9 (r = -0.606; <it>P </it>< 0.05). As expected, positive coefficients were observed after treatment with tPA. Co-treatment with HBO attenuated and in part reversed this effect, but to a lower degree than HBO alone. Amongst MMPs and TIMPs, significant associations shifted from MMP-9 to -2 when comparing treatment with HBO/tPA and tPA+HBO. TIMPs were significantly interrelated after tPA, tPA+HBO, and interestingly, HBO alone.</p> <p>Conclusions</p> <p>HBO was found to reverse the positively directed interrelation of BBB-P and MMPs after eMCAO, but this effect failed to sustain in the expected amount when HBO and tPA were given simultaneously.</p

    A Combined Clinical and Serum Biomarker-Based Approach May Allow Early Differentiation Between Patients With Minor Stroke and Transient Ischemic Attack as Well as Mid-term Prognostication

    Get PDF
    Background: Early differentiation between transient ischemic attack (TIA) and minor ischemic stroke (MIS) impacts on the patient’s individual diagnostic work-up and treatment. Furthermore, estimations regarding persisting impairments after MIS are essential to guide rehabilitation programs. This study evaluated a combined clinical- and serum biomarker-based approach for the differentiation between TIA and MIS as well as the mid-term prognostication of the functional outcome, which is applicable within the first 24 h after symptom onset. Methods: Prospectively collected data were used for a retrospective analysis including the neurological deficit at admission (National Institutes of Health Stroke Scale, NIHSS) and the following serum biomarkers covering different pathophysiological aspects of stroke: Coagulation (fibrinogen, antithrombin), inflammation (C reactive protein), neuronal damage in the cellular [neuron specific enolase], and the extracellular compartment [matrix metalloproteinase-9, hyaluronic acid]. Further, cerebral magnetic resonance imaging was performed at baseline and day 7, while functional outcome was evaluated with the modified Rankin Scale (mRS) after 3, 6, and 12 months. Results: Based on data from 96 patients (age 64 ± 14 years), 23 TIA patients (NIHSS 0.6 ± 1.1) were compared with 73 MIS patients (NIHSS 2.4 ± 2.0). In a binary logistic regression analysis, the combination of NIHSS and serum biomarkers differentiated MIS from TIA with a sensitivity of 91.8% and a specificity of 60.9% [area under the curve (AUC) 0.84]. In patients with NIHSS 0 at admission, this panel resulted in a still acceptable sensitivity of 81.3% (specificity 71.4%, AUC 0.69) for the differentiation between MIS (n = 16) and TIA (n = 14). By adding age, remarkable sensitivities of 98.4, 100, and 98.2% for the prediction of an excellent outcome (mRS 0 or 1) were achieved with respect to time points investigated within the 1-year follow-up. However, the specificity was moderate and decreased over time (83.3, 70, 58.3%; AUC 0.96, 0.92, 0.91). Conclusion: This pilot study provides evidence that the NIHSS combined with selected serum biomarkers covering pathophysiological aspects of stroke may represent a useful tool to differentiate between MIS and TIA within 24 h after symptom onset. Further, this approach may accurately predict the mid-term outcome in minor stroke patients, which might help to allocate rehabilitative resources

    Experimental treatment of stroke in spontaneously hypertensive rats by CD34+ and CD34- cord blood cells

    Get PDF
    Human umbilical cord blood as a source of stem cells has recently been reported in experimental treatment of cerebral disorders. However, little is known about the nature of cells and cellular mechanisms leading to neurofunctional improvement. Here we investigated the potential of separated CD34+ versus CD34- human umbilical cord blood cells (HUCBC) to promote functional recovery following stroke. The experiments were performed in spontaneously hypertensive (SH) rats, known for a risk profile comparable to stroke patients

    Early outcome and blood-brain barrier integrity after co-administered thrombolysis and hyperbaric oxygenation in experimental stroke

    Get PDF
    Background After promising results in experimental stroke, normobaric (NBO) or hyperbaric oxygenation (HBO) have recently been discussed as co-medication with tissue plasminogen activator (tPA) for improving outcome. This study assessed the interactions of hyperoxia and tPA, focusing on survival, early functional outcome and blood-brain barrier (BBB) integrity following experimental stroke. Methods Rats (n=109) underwent embolic middle cerebral artery occlusion or sham surgery. Animals were assigned to: Control, NBO (60-minute pure oxygen), HBO (60-minute pure oxygen at 2.4 absolute atmospheres), tPA, or HBO+tPA. Functional impairment was assessed at 4 and 24 hours using Menzies score, followed by intravenous application of FITC-albumin as a BBB permeability marker, which was allowed to circulate for 1 hour. Further, blood sampling was performed at 5 and 25 hours for MMP-2, MMP-9, TIMP-1 and TIMP-2 concentration. Results Mortality rates did not differ significantly between groups, whereas functional improvement was found for NBO, tPA and HBO+tPA. NBO and HBO tended to stabilize BBB and to reduce MMP-2. tPA tended to increase BBB permeability with corresponding MMP and TIMP elevation. Co-administered HBO failed to attenuate these early deleterious effects, independent of functional improvement. Conclusions The long-term consequences of simultaneously applied tPA and both NBO and HBO need to be addressed by further studies to identify therapeutic potencies in acute stroke, and to avoid unfavorable courses following combined treatment

    Allogeneic Non-Adherent Bone Marrow Cells Facilitate Hematopoietic Recovery but Do Not Lead to Allogeneic Engraftment

    Get PDF
    Background Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4?/?, HLA-DR3+ mice. Methodology/Principal Findings Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death. Conclusions/Significance NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies

    Neuronal hypoxia in vitro: Investigation of therapeutic principles of HUCB-MNC and CD133+ stem cells

    Get PDF
    Background The therapeutic capacity of human umbilical cord blood mononuclear cells (HUCB-MNC) and stem cells derived thereof is documented in animal models of focal cerebral ischemia, while mechanisms behind the reduction of lesion size and the observed improvement of behavioral skills still remain poorly understood. Methods A human in vitro model of neuronal hypoxia was used to address the impact of total HUCB-MNC (tMNC), a stem cell enriched fraction (CD133+, 97.38% CD133-positive cells) and a stem cell depleted fraction (CD133-, 0.06% CD133-positive cells) of HUCB-MNC by either direct or indirect co-cultivation with post-hypoxic neuronal cells (differentiated SH-SY5Y). Over three days, development of apoptosis and necrosis of neuronal cells, chemotaxis of MNC and production of chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9) and growth factors (G-CSF, GM-CSF, VEGF, bFGF) were analyzed using fluorescence microscopy, FACS and cytometric bead array. Results tMNC, CD133+ and surprisingly CD133- reduced neuronal apoptosis in direct co-cultivations significantly to levels in the range of normoxic controls (7% ± 3%). Untreated post-hypoxic control cultures showed apoptosis rates of 85% ± 11%. tMNC actively migrated towards injured neuronal cells. Both co-cultivation types using tMNC or CD133- reduced apoptosis comparably. CD133- produced high concentrations of CCL3 and neuroprotective G-CSF within indirect co-cultures. Soluble factors produced by CD133+ cells were not detectable in direct co-cultures. Conclusion Our data show that heterogeneous tMNC and even CD133-depleted fractions have the capability not only to reduce apoptosis in neuronal cells but also to trigger the retaining of neuronal phenotypes

    Effectiveness of cytopenia prophylaxis for different filgrastim and pegfilgrastim schedules in a chemotherapy mouse model

    No full text
    Markus Scholz1, Manuela Ackermann2, Frank Emmrich2, Markus Loeffler1, Manja Kamprad21Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16&amp;ndash;18, 04107 Leipzig, Germany; 2Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, GermanyObjectives: Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is widely used to treat neutropenia during cytotoxic chemotherapy. The optimal scheduling of rhG-CSF is unknown and can hardly be tested in clinical studies due to numerous therapy parameters affecting outcome (chemotherapeutic regimen, rhG-CSF schedules, individual covariables). Motivated by biomathematical model simulations, we aim to investigate different rhG-CSF schedules in a preclinical chemotherapy mouse model.Methods: The time course of hematotoxicity was studied in CD-1 mice after cyclophosphamide (CP) administration. Filgrastim was applied concomitantly in a 2 &amp;times; 3-factorial design of two dosing options (2 &amp;times; 20 &amp;mu;g and 4 &amp;times; 10 &amp;mu;g) and three timing options (directly, one, and two days after CP). Alternatively, a single dose of 40 &amp;mu;g pegfilgrastim was applied at the three timing options. The resulting cytopenia was compared among the schedules.Results: Dosing and timing had a significant influence on the effectiveness of filgrastim schedules whereas for pegfilgrastim the timing effect was irrelevant. The best filgrastim and pegfilgrastim schedules exhibited equivalent toxicity. Monocytes dynamics performed analogously to granulocytes. All schedules showed roughly the same lymphotoxicity.Conclusion: We conclude that effectiveness of filgrastim application depends heavily on its scheduling during chemotherapy. There is an optimum of timing. Dose splitting is better than concentrated applications. Effectiveness of pegfilgrastim is less dependent on timing.Keywords: rhG-CSF, chemotherapy toxicity, mice, cyclophosphamide, cytopenia, neutropeni

    Monitoring Disease Progression and Therapeutic Response in a Disseminated Tumor Model for Non-Hodgkin Lymphoma by Bioluminescence Imaging

    No full text
    Xenograft tumor models are widely studied in cancer research. Our aim was to establish and apply a model for aggressive CD20-positive B-cell non-Hodgkin lymphomas, enabling us to monitor tumor growth and shrinkage in a noninvasive manner. By stably transfecting a luciferase expression vector, we created two bioluminescent human non-Hodgkin lymphoma cell lines, Jeko1(luci) and OCI-Ly3(luci), that are CD20 positive, a prerequisite to studying rituximab, a chimeric anti-CD20 antibody. To investigate the therapy response in vivo, we established a disseminated xenograft tumor model injecting these cell lines in NOD/SCID mice. We observed a close correlation of bioluminescence intensity and tumor burden, allowing us to monitor therapy response in the living animal. Cyclophosphamide reduced tumor burden in mice injected with either cell line in a dose-dependent manner. Rituximab alone was effective in OCI-Ly3(luci)-injected mice and acted additively in combination with cyclophosphamide. In contrast, it improved the therapeutic outcome of Jeko1(luci)-injected mice only in combination with cyclophosphamide. We conclude that well-established bioluminescence imaging is a valuable tool in disseminated xenograft tumor models. Our model can be translated to other cell lines and used to examine new therapeutic agents and schedules
    corecore