26 research outputs found

    Effects of skim-milk supplementation on the quality and penetrating ability of boar semen after long-term preservation at 15 °C

    Get PDF
    This study investigated the effects of skim-milk supplementation on the quality and penetrating ability of boar semen preserved at 15 °C. When boar semen samples were preserved in Modified Modena extender supplemented with various concentrations (0, 7.5, 15, 30 and 50 mg/mL) of skim milk powder at 15 °C for 4 weeks, higher sperm motility and viability were observed in the case of 7.5 mg/mL skim-milk supplementation compared with the control group (0 mg/mL) during the preservation (P < 0.05). When in vitro matured oocytes were co-incubated with boar sperm that had been preserved in Modified Modena extender with three different concentrations (0, 7.5 or 15 mg/mL) of skim milk powder at 15 °C for two weeks, there were no apparent effects of skim-milk supplementation on the rates of fertilisation and development to blastocysts of oocytes after co-incubation. However, the monospermic fertilisation rate of sperm preserved with 15 mg/mL skim milk powder was higher (P < 0.05) than that of fresh non-preserved sperm, but did not differ among the preservation groups. The results indicate that the supplementation of Modified Modena extender with 7.5 mg/mL skim milk powder improves the motility and viability, but not the penetrating ability, of sperm after liquid preservation for at least two weeks

    Timing and duration of lipofection-mediated CRISPR/Cas9 delivery into porcine zygotes affect gene-editing events

    Get PDF
    Objective: Lipofection-mediated introduction of the CRISPR/Cas9 system in porcine zygotes provides a simple method for gene editing, without requiring micromanipulation. However, the gene editing efficiency is inadequate. The aim of this study was to improve the lipofection-mediated gene editing efficiency by optimizing the timing and duration of lipofection. Results: Zona pellucida (ZP)-free zygotes collected at 5, 10, and 15 h from the start of in vitro fertilization (IVF) were incubated with lipofection reagent, guide RNA (gRNA) targeting GGTA1, and Cas9 for 5 h. Lipofection of zygotes collected at 10 and 15 h from the start of IVF yielded mutant blastocysts. Next, ZP-free zygotes collected at 10 h from the start of IVF were incubated with lipofection reagent, gRNA, and Cas9 for 2.5, 5, 10, or 20 h. The blastocyst formation rate of zygotes treated for 20 h was significantly lower (p < 0.05) than those of the other groups, and no mutant blastocysts were obtained. Moreover, the mutation rates of the resulting blastocysts decreased as the incubation time increased. In conclusion, a lipofection-mediated gene editing system using the CRISPR/Cas9 system in ZP-zygotes is feasible; however, further improvements in the gene editing efficiency are required

    Cell cycle analysis and interspecies nuclear transfer of cat cells treated with chemical inhibitors

    Get PDF
    This study investigated the effect of chemical inhibitors on the cell-cycle synchronisation in cat fibroblast cells and evaluated the development of interspecies embryos reconstructed from cat donor cells and enucleated bovine oocytes. Cat fibroblast cells were treated with 15 μg/mL roscovitine or 0.05 μg/mL deme-colcine prior to cell cycle analysis and nuclear transfer. The percentage of cat fibroblast cells arrested at the G0/G1 phase in the roscovitine group was similar to that in the control group without any treatment. The percentage of cells arrested at the G2/M phase was significantly higher in the demecolcine group than in the control group. The fusion rate of interspecies couplets was significantly greater in the roscovitine group than in the control group. Most embryos stopped the development at the 2- or 4-cell stage, and none developed into blastocysts. Chemical inhibitor-induced donor cell cycle synchronisation did not overcome developmental arrest in interspecies cloned embryos

    Chlorogenic and caffeic acid supplementation during sperm freezing

    Get PDF
    Chlorogenic acid (CGA) and caffeic acid (CA) are potent antioxidants that are mostly found in coffee beans. This study aimed to investigate the effects of CGA and CA supplementation during semen freezing on the quality of frozen-thawed boar spermatozoa. The antioxidants CGA and CA were added to a semen extender to achieve final concentrations of 50, 100, 200 and 400 µM. Supplementation of 100 µM CGA and CA yielded a significantly higher percentage of sperm viability (increased by 8 - 10%) and plasma membrane integrity (increased by 4 - 6%) than the control groups without the antioxidants at 0 h and 3 h after thawing (P < 0.05). At a concentration of 100 µM, CGA and CA also yielded beneficial effects on total and progressive sperm motility. Increases of CGA and CA concentrations to more than 200 µM did not enhance any sperm quality parameters. When the sperm penetrability and oocyte development by spermatozoa frozen with CGA and CA were evaluated, CGA and CA supplementations had no positive effects on the percentages of total fertilization, monospermic fertilization, cleavage and blastocyst formation. In conclusion, the supplementation of 100 µM CGA and CA during sperm freezing improved certain sperm parameters including motility, viability and plasma membrane integrity

    Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos

    Get PDF
    Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9, without performing electroporation or microinjection, remains unclear. In this study, we demonstrated that lipofection treatment successfully induced mutation into zygotes during in vitro fertilization and in embryos at the 2- and 4-cell stages. Although liposome-mediated gene editing is a feasible system for use with zona-pellucida-free oocytes/embryos, several challenges must be overcome.Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, how this system functions in mammalian oocytes and embryos remains unclear. The present study was conducted to clarify whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9 for 5 h without using electroporation or microinjection. A mosaic mutation was observed in blastocysts derived from zona pellucida (ZP)-free oocytes following lipofection treatment, regardless of the target genes. When lipofection treatment was performed after in vitro fertilization (IVF), no significant differences in the mutation rates or mutation efficiency were found between blastocysts derived from embryos treated at 24 and 29 h from the start of IVF. Only blastocysts from embryos exposed to lipofection treatment at 29 h after IVF contained biallelic mutant. Furthermore, there were no significant differences in the mutation rates or mutation efficiency between blastocysts derived from embryos at the 2- and 4-cell stages. This suggests that lipofection-mediated gene editing can be performed in ZP-free oocytes and ZP-free embryos; however, other factors affecting the system efficiency should be further investigated

    Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages

    Get PDF
    Objective: Cytoplasmic microinjection and electroporation of the CRISPR/Cas9 system into zygotes are used for generating genetically modified pigs. However, these methods create mosaic mutations in embryos. In this study, we evaluated whether the gene editing method and embryonic stage for gene editing affect the gene editing efficiency of porcine embryos. Results: First, we designed five guide RNAs (gRNAs) targeting the B4GALNT2 gene and evaluated mutation efficiency by introducing each gRNA with Cas9 protein into zygotes by electroporation. Next, the optimized gRNA with Cas9 protein was introduced into 1-cell and 2-cell stage embryos by either microinjection or electroporation. The sequence of gRNA affected the bi-allelic mutation rate and mutation efficiency of blastocysts derived from electroporated embryos. Microinjection significantly decreased the cleavage rates in each embryonic stage and blastocyst formation rates in 2-cell stage embryos compared with electroporation (p < 0.05). However, the bi-allelic mutation rate and mutation efficiency of blastocysts from the 1-cell stage embryos edited using microinjection were significantly higher (p < 0.05) than those of blastocysts from the 2-cell stage embryos edited by both methods. These results indicate that the gene editing method and embryonic stage for gene editing may affect the genotype and mutation efficiency of the resulting embryos

    HISTONE H3 MODIFICATION OF ISCNT EMBRYOS

    Get PDF
    This study aimed to determine the acetylation patterns on histone H3K9/18/23 and the dimethylation pattern on histone H3K9 during early embryogenesis among 50 nM Trichostatin A (TSA)-treated iSCNT cat-cow embryos, untreated iSCNT cat-cow embryos (control) and bovine in vitro fertilisation (IVF) embryos, because TSA-treated iSCNT embryos are able to develop into blastocysts. The results show that the acetylation levels of H3K9/18/23 in the TSA-treated iSCNT and bovine IVF embryos were higher than those in the control embryos at almost all of the examined stages (2 h post-fusion / post-insemination (PF/PI), pronuclear (PN), two-cell, four-cell and eight-cell stages). At 6 h PF/PI the acetylation levels on H3K9/23 in the TSA-treated iSCNT and bovine IVF embryos were lower than those in the control, and there was no difference in the acetylation levels of H3K18 among the three groups. The acetylation levels of H3K9/23 increased either in the TSA-treated iSCNT or and bovine IVF embryos increased when those embryos developed to the PN and two-cell stages. The dimethylation level of H3K9 in the TSA-treated iSCNT embryos resembled that of the bovine IVF embryos at all examined stages (2h PF/PI, 6 h PF/PI and PN stages), and these levels were greater than those of the control. This result suggests that treatment of iSCNT embryos with TSA modifies the patterns of histone acetylation and dimethylation at certain lysine residues in a manner that is comparable with that seen in IVF embryos during early embryogenesis

    The Relationship between Embryonic Development and the Efficiency of Target Mutations in Porcine Endogenous Retroviruses (PERVs) Pol Genes in Porcine Embryos

    Get PDF
    Porcine endogenous retrovirus (PERV) is a provirus found in the pig genome that may act as an infectious pathogen in humans who receive pig organ xenotransplantation. Inactivation of the PERV pol gene in porcine cells reportedly affects cell growth. Therefore, the mutation of PERV pol gene in porcine embryos using genome editing may affect the embryonic development. The present study was carried out to investigate the relationship between the mutation of the PERV pol gene in porcine embryos and their development. We introduced, either alone or in combination, three different gRNAs (gRNA1, 2, and 3) into porcine zygotes by genome editing using electroporation of the Cas9 protein (GEEP) system. All three gRNAs targeted the PERV pol gene, and we assessed their effects on porcine embryonic development. Our results showed that the blastocyst formation rates of zygotes electroporated with gRNA3—alone and in combination—were significantly lower (p < 0.05) than those of zygotes electroporated with gRNA1. The mutation rates assessed by the PERV pol gene target site sequencing in individual blastocysts and pooled embryos at the 2-to-8-cell stage did not differ among the three gRNAs. However, the frequency of indel mutations in mutant embryos at the 2-to-8-cell stage trended higher in the embryos electroporated with gRNA3 alone and in combination. Embryonic development may be affected by gRNAs that induce high-frequency indel mutations.Pigs with porcine endogenous retrovirus (PERV) inactivation are preferable donor sources for xenotransplantation because the PERV may act as an infectious pathogen for humans who receive pig organ xenotransplantation. However, inactivation of the PERV pol gene in porcine cells reportedly affects cell growth. The present study clarified the relationship between the mutation of the PERV pol gene in porcine embryos and their development. Three different gRNAs targeting the PERV pol gene were introduced into porcine zygotes by genome editing using electroporation of the Cas9 protein (GEEP) system. The results demonstrated a negative relationship between the embryonic development and the efficiency of target mutations in the PERV pol gene of the porcine embryos

    Effects of Tris (hydroxymethyl) aminomethane on the quality of frozen-thawed boar spermatozoa

    Get PDF
    Tris (hydroxymethyl) aminomethane (Tris) has been used as a pH regulator for buffering the pH of dilution extenders for boar semen, such as the Modena extender. The purpose of the present study was to assess the effects of Tris supplementation at different concentrations (0, 8, 24 and 72 μM) into the freezing extender on the quality and fertilising capacity of frozen-thawed boar spermatozoa. The results showed that the supplementation of 24 μM of Tris gave significantly higher percentages of sperm viability and plasma membrane integrity than those of the control group at any time point of assessment (0 h and 3 h post-thawing) (P < 0.05). However, there were no significant differences in the acrosome integrity parameter among the groups. Higher percentages of sperm motility were observed in the spermatozoa cryopreserved with 24 μM of Tris compared to the control groups when the samples were analysed 0 h after thawing (P < 0.05). However, an increase of the Tris concentration to 72 μM did not enhance the sperm motility parameters. The total numbers of fertilised oocytes and blastocysts obtained with spermatozoa frozen with 24 μM Tris were significantly higher than those of the control group without Tris (P < 0.05). In conclusion, the supplementation of 24 μM Tris into the freezing extender contributes to a better boar sperm quality and fertilising capacity after the process of freezing and thawing

    Triple gene editing in porcine embryos using electroporation alone or in combination with microinjection

    Get PDF
    Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes. Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts. Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes. Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP
    corecore