95 research outputs found
Renormalization and Computation II: Time Cut-off and the Halting Problem
This is the second installment to the project initiated in [Ma3]. In the
first Part, I argued that both philosophy and technique of the perturbative
renormalization in quantum field theory could be meaningfully transplanted to
the theory of computation, and sketched several contexts supporting this view.
In this second part, I address some of the issues raised in [Ma3] and provide
their development in three contexts: a categorification of the algorithmic
computations; time cut--off and Anytime Algorithms; and finally, a Hopf algebra
renormalization of the Halting Problem.Comment: 28 page
Complexity vs Energy: Theory of Computation and Theoretical Physics
This paper is a survey dedicated to the analogy between the notions of {\it
complexity} in theoretical computer science and {\it energy} in physics. This
analogy is not metaphorical: I describe three precise mathematical contexts,
suggested recently, in which mathematics related to (un)computability is
inspired by and to a degree reproduces formalisms of statistical physics and
quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra,
Geometry, Information", Tallinn, July 9-12, 201
Classical computing, quantum computing, and Shor's factoring algorithm
This is an expository talk written for the Bourbaki Seminar. After a brief
introduction, Section 1 discusses in the categorical language the structure of
the classical deterministic computations. Basic notions of complexity icluding
the P/NP problem are reviewed. Section 2 introduces the notion of quantum
parallelism and explains the main issues of quantum computing. Section 3 is
devoted to four quantum subroutines: initialization, quantum computing of
classical Boolean functions, quantum Fourier transform, and Grover's search
algorithm. The central Section 4 explains Shor's factoring algorithm. Section 5
relates Kolmogorov's complexity to the spectral properties of computable
function. Appendix contributes to the prehistory of quantum computing.Comment: 27 pp., no figures, amste
F-manifolds with flat structure and Dubrovin's duality
This work continues the study of --manifolds , first defined by
Hertling and Manin and investigated in [He]. The notion of a compatible flat
structure is introduced, and it is shown that many constructions known
for Frobenius manifolds do not in fact require invariant metrics and can be
developed for all such triples In particular, we extend
and generalize recent Dubrovin's duality.Comment: 22 page
Forgotten Motives: the Varieties of Scientific Experience
Personal recollections about Alexandre Grothendieck and early days of his
theory of motivesComment: 10 pages. Small corrections inserted. Published in: "Alexandre
Grothendieck: A Mathematical Portrait." Ed. by Leila Schneps, International
Press of Boston, 2014, 307 p
- …