8 research outputs found

    Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population

    Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida parapsilosis

    Get PDF
    Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2. Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins

    Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus

    No full text
    Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population

    Training a Drug to Do New Tricks: Insights on Stability of Meropenem Administered as a Continuous Infusion

    No full text
    Background: The antibiotic armamentarium used to combat multi-drug resistant organisms (MDROs) include carbapenems. Continuous infusion (CI) dosing is frequently employed to maximize beta-lactam efficacy; however, use of meropenem CI has been limited due to concerns with product instability. Objective: The primary objective of this study was to quantify meropenem serum concentrations to reflect drug stability when administered as CI over 8- or 12-h exchanges. In addition, a stability experiment was performed to further establish meropenem integrity over 12 h. The secondary objectives were to assess the ability of meropenem to achieve target pharmacokinetic/pharmacodynamic (PK/PD) exposures relative to the minimum inhibitory concentration (MIC) of the pathogen, and to determine clinical cure. Methods: This was a retrospective, observational study on use of CI meropenem (infused either over 8- or 12- h) at a 1% concentration. The stability experiment was conducted on 1% meropenem at room temperature. Results: In 22 patients, a median meropenem daily dose of 6 g/day (range 2-6 g/day) resulted in a median serum concentration of 17.8 mg/L (interquartile range, 9.3-27.8 mg/L). In 95% of cases, meropenem delivered as CI resulted in free drug concentrations at or above the MIC of the pathogen for the entire dosing interval. Clinical cure was achieved in 80% of patients included in this review. The stability experiment revealed negligible drug degradation at the end of the 12-h dosing interval. Conclusions: The data from this study provides compelling evidence for the use of meropenem as CI utilizing either a 12- or 8-h exchange process

    Cefepime Daily Exposure and the Associated Impact on the Change in Sequential Organ Failure Assessment Scores and Vasopressors Requirement in Critically Ill Patients Using Repeated-Measures Mixed-Effect Modeling

    No full text
    IMPORTANCE: Sepsis and septic shock are major healthcare problems that need early and appropriate management. OBJECTIVES: To evaluate the association of daily cefepime pharmacokinetic/pharmacodynamic (PK/PD) parameters with change in Sequential Organ Failure Assessment (SOFA) score and vasopressors requirement. DESIGN, SETTING, AND PARTICIPANTS: This is a retrospective study. Adult ICU patients who received cefepime for Gram-negative pneumonia or bloodstream infection (BSI) and had cefepime concentrations measured were included. Daily cefepime exposure was generated and PK/PD parameters calculated for patients. Repeated-measures mixed-effect modeling was used to evaluate the impact of PK/PD on the outcomes. MAIN OUTCOMES AND MEASURES: Change in daily SOFA score and vasopressors requirement. RESULTS: A total of 394 and 207 patients were included in the SOFA and vasopressors analyses, respectively. The mean (±sd) age was 55 years (19) and weight 81 kg (29). For the change in SOFA score, daily SOFA score, mechanical ventilation, renal replacement therapy, and number of vasopressors were included. In the vasopressors analysis, daily SOFA score, day of therapy, and hydrocortisone dose were significant covariates in the final model. Achieving cefepime concentrations above the minimum inhibitory concentration (MIC) (T&gt;MIC) for 100% of the dosing interval was associated with 0.006 µg/kg/min decrease in norepinephrine-equivalent dose. Cefepime PK/PD did not have an impact on the daily change in SOFA score. CONCLUSIONS AND RELEVANCE: Achieving 100% T&gt;MIC was associated with negligible decrease in vasopressors requirement in ICU patients with Gram-negative pneumonia and BSI. There was no impact on the change in SOFA score.</p

    Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis

    No full text
    Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2. Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins
    corecore