28 research outputs found

    Expression of lysophosphatidic acid acyltransferase beta (LPAAT-β) in ovarian carcinoma: correlation with tumour grading and prognosis

    Get PDF
    Lysophosphatidic acid acyltransferase beta (LPAAT-β) is an enzyme involved in lipid biosynthesis whose role in tumour progression has been of emerging interest in the last few years. We investigated the expression of LPAAT-β by reverse transcriptase–polymerase chain reaction and immunohistochemistry in 10 ovarian cell lines as well as in a cohort of 106 ovarian tumours and normal ovaries. Lysophosphatidic acid acyltransferase beta mRNA was found in all cell lines and ovarian tumours examined. Expression of LPAAT-β protein was significantly increased in ovarian carcinomas compared to benign ovarian tissue (χ2 test P-value=0.001, Kruskal–Wallis test P-value <0.0001). Furthermore, LPAAT-β expression was positively associated with higher tumour grade (P=0.044), higher mitotic index (P<0.0001) and tumour stage (P=0.032). Expression of LPAAT-β was significantly linked to reduced overall survival time (P=0.024) as well as to shorter progression-free survival time (P=0.012) in patients younger than 60 years. Our study shows that LPAAT-β is upregulated in ovarian cancer and is more prevalent in poorly differentiated tumours. In addition, LPAAT-β expression is a predictor of a worse prognosis in patients younger than 60 years. Further studies are needed to investigate if LPAAT-β may serve as a therapeutic target for certain subgroups of patients

    Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform

    Get PDF
    The dynamics and coordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required the earliest, followed by auto-phosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps, whereas ULK1 and ULK2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way, suggesting multiple initiation events. Targeted ubiquitinated mitochondria are cradled by endoplasmic reticulum (ER) strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands, providing platforms for formation of the mitophagosomes

    Selective autophagy of mitochondria on a ubiquitin-endoplasmic reticulum platform

    Get PDF
    Correction: Developmental Cell, Volume 55, Issue 2 https://doi.org/10.1016/j.devcel.2020.10.002The dynamics and co-ordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes, or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required earliest followed by autophosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps whereas ULK1/2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way suggesting multiple initiation events. Targeted ubiquitinated mitochondrial are cradled by endoplasmic reticulum strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands providing platforms for formation of the mitophagosomes.Peer reviewe

    Immunolocalisation of phospholipase D1 on tubular vesicular membranes of endocytic and secretory origin

    No full text
    We have examined the localisation of overexpressed phospholipase D1 (PLD1) using antibodies against its amino- and carboxyl-terminal domains. PLD1 overexpressed in COS-7 cells showed variable distribution by immunofluorescence but was mainly in punctate structures in the perinuclear region and at the plasma membrane. Downregulation by an anti-sense plasmid resulted in almost exclusively perinuclear distribution in punctate structures that contained immunoreactivity for the endogenous KDEL receptor and the early endosomal antigen EEA1 protein. Influenza haemagglutinin (HA) and HA-derived mutants designed to locate primarily to secretory or endocytic membranes were present in PLD1-positive membranes. Immunofluorescence analysis in permanent CHO cell lines that express PLD1 inducibly confirmed the presence of PLD1 on both endocytic and secretory membranes. Analysis of PLD1 distribution by immunocytochemistry and electron microscopy of intact CHO cells and of isolated membranes revealed that PLD1 was present in tubulovesicular elements and multivesicular bodies. Some of these were close to the Golgi region whereas others stained positive for endocytic cargo proteins. Morphometric analysis assigned the majority of PLD1 immunoreactivity on endosomal membranes and a smaller amount on membranes of secretory origin. PLD1, via signals that are currently not understood, is capable of localising in tubulovesicular membranes of both endocytic and secretory origin

    Lipid affinity beads: from identifying new lipid binding proteins to assessing their binding properties

    No full text
    Lipid affinity beads can be used to identify novel proteins with lipid binding capacity or to determine binding prerequisites of known lipid-binding proteins. Here we describe several applications for which this tool can be used and which considerations have to be taken into account. In addition to a precise protocol, several suggestions are made for experimental setups to facilitate identification of in vivo lipid binding targets
    corecore