64 research outputs found

    Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch

    Get PDF
    Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical technique, which is capable of providing high specificity; thus, it can be used for toxicological drug assay (detection and quantification). However, SERS-based drug analysis directly in human biofluids requires mitigation of fouling and nonspecificity effects that commonly appeared from unwanted adsorption of endogenous biomolecules present in biofluids (e.g., blood plasma and serum) onto the SERS substrate. Here, we report a bottom-up fabrication strategy to prepare ultrasensitive SERS substrates, first, by functionalizing chemically synthesized gold triangular nanoprisms (Au TNPs) with poly(ethylene glycol)-thiolate in the solid state to avoid protein fouling and second, by generating flexible plasmonic patches to enhance SERS sensitivity via the formation of high-intensity electromagnetic hot spots. Poly(ethylene glycol)-thiolate-functionalized Au TNPs in the form of flexible plasmonic patches show a twofold-improved signal-to-noise ratio in comparison to triethylamine (TEA)-passivated Au TNPs. Furthermore, the plasmonic patch displays a SERS enhancement factor of 4.5 ×107. Utilizing the Langmuir adsorption model, we determine the adsorption constant of drugs for two different surface ligands and observe that the drug molecules display stronger affinity for poly(ethylene glycol) ligands than TEA. Our density functional theory calculations unequivocally support the interaction between drug molecules and poly(ethylene glycol) moieties. Furthermore, the universality of the plasmonic patch for SERS-based drug detection is demonstrated for cocaine, JWH-018, and opioids (fentanyl, despropionyl fentanyl, and heroin) and binary mixture (trace amount of fentanyl in heroin) analyses. We demonstrate the applicability of flexible plasmonic patches for the selective assay of fentanyl at picogram/milliliter concentration levels from drug-of-abuse patients’ blood plasma. The fentanyl concentration calculated in the patients’ blood plasma from SERS analysis is in excellent agreement with the values determined using the paper spray ionization mass spectrometry technique. We believe that the flexible plasmonic patch fabrication strategy would be widely applicable to any plasmonic nanostructure for SERS-based chemical sensing for clinical toxicology and therapeutic drug monitoring

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Dual-technique assay for the analysis of organophosphorus compounds for environmental and chemical defense applications

    No full text
    Forensic and environmental sciences often rely on chromatographic separations coupled to mass spectrometry to detect contaminants in complex matrices. However, these methods require lengthy analysis times and sample preparation that is not suitable for analysis in the field. In this work, two analytical methods were combined that are known for their potential for portable analysis. The ambient ionization technique, paper spray mass spectrometry (paper spray-MS) was coupled to paper-based surface enhanced Raman spectroscopy (pSERS) to detect toxic organophosphorus molecules from the same substrate, with a total analysis time of less than five minutes. The coupling of these techniques presents a potential for portable Raman screening followed by MS confirmation in a field-forward laboratory. A cartridge insert was designed and 3D printed to facilitate the sample collection and analysis for PS-MS and pSERS. Three chemical warfare agent simulants: dimethyl methylphosphonate (DMMP), diethyl phosphoramidate (DEPA), and diisopropyl methylphosphonate (DIMP) were included in the method due to having similar chemistries to G- and V-series chemical warfare agents (CWAs). Organophosphorus pesticides, malathion and dichlorvos, with similar mechanisms of action to the CWAs, were also included in the method. Because CWAs quickly degrade in the environment, the CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PinMPA), methylphosphonic acid (MPA), 2-Diethylaminoethanethiol (EDA), and 2-Diisopropylaminoethanethiol (IDA) were also studied. A mixture of the analytes was used to create calibration curves using the dual-polarity, PS-MS method with sub-ng to low ng limits of detection. A dilution series, spanning 3 orders of magnitude, was made using pSERS, also with low ng limits of detection. These experiments show the potential and feasibility for PS-MS coupled to pSERS to be used to rapidly, screen and confirm the presence of organophosphorus molecules, in complex matrices, with portable instrumentation
    corecore