18 research outputs found

    Polymerically Modified Layered Silicates: An Effective Route to Nanocomposites

    Get PDF
    Polymer/clay nanocomposites have been under an extensive investigation for about 15 years. Traditional methods to modify the clay are usually limited to small organic cations, preferably containing long alkyl chain(s), which are exchanged with the inorganic cations in the clay gallery. This article provides a comprehensive review on the strategies for clay modification using polymeric surfactants or polycations: from the synthesis of such surfactants, through the preparation of the polymerically modified clays, and to the fabrication of the respective polymer nanocomposites and their properties

    Expandable Graphite/Polyamide-6 Nanocomposites

    Get PDF
    Polyamide-6 (PA-6)/graphite nanocomposites were prepared by melt blending, using a variety of graphites, including virgin graphite, expandable graphites and expanded graphite. The resulting nanocomposites were characterized by X-ray diffraction, thermogravimetric analysis, cone calorimetry, and tensile mechanical analysis. Nanocomposite formation does occur, as denoted by the nanometre dispersion of graphite layers in the polymer matrix, and the dispersion depends on the graphite treatment. The material properties of the resulting composites are improved relative to the virgin/unfilled polymer; in particular, there is an enhancement of the thermal stability without any significant deterioration of the mechanical properties

    Benzimidazolium Surfactants for Modification of Clays for Use with Styrenic Polymers

    Get PDF
    Nanocomposites of polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS) and high impact polystyrene (HIPS) were prepared with two new homologous benzimidazolium surfactants used as organic modifications for the clays. The morphology of the polymer/clay hybrids was evaluated by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites was enhanced, as evaluated by thermogravimetric analysis. From cone calorimetric measurements, the peak heat release rate of the nanocomposites was decreased by about the same amount as seen for other organically-modified, commercially available clays

    EVA-Layered Double Hydroxide (Nano)Composites: Mechanism of Fire Retardancy

    Get PDF
    Composites of ethyleneevinyl acetate copolymer with two different layered double hydroxides have been obtained by melt blending and these have been characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, thermogravimetric analysis connected to mass spectroscopy and cone calorimetry. There is some small difference in dispersion between the zinc-containing and the magnesium-containing layered double hydroxides in EVA, but both these are microcomposites with good dispersion at the micrometer level and relatively poor dispersion at the nanometer level. There is a good reduction in the peak heat release rate at 10% LDH loading. In addition to chain stripping, which involves the simultaneous loss of both acetate and a hydrogen atom, forming acetic acid, and the formation of poly(ethylene-co-acetylene), side chain fragmentation of the acetate group also occurs and may be the dominant pathway of thermal degradation in the first step. The presence of the LDH causes acetone, rather than acetic acid, to be evolved in the initial step of the degradation

    Polymer Nanocomposites Using Zinc Aluminum and Magnesium Aluminum Oleate Layered Double Hydroxides: Effects of LDH Divalent Metals on Dispersion, Thermal, Mechanical and Fire Performance in Various Polymers

    Get PDF
    Oleate-containing layered double hydroxides of zinc aluminum (ZnAl) and magnesium aluminum (MgAl) were used to prepare nanocomposites of polyethylene, poly(ethylene-co-butyl acrylate) and poly(methyl methacrylate). The additives and/or their polymer composites were characterized by X-ray diffraction, FTIR, elemental analysis, thermogravimetric analysis, mechanical testing, and cone calorimetry. The unusual packing of the monounsaturated oleate anions in the gallery of these LDHs facilitates the dispersion of these nanomaterials. The inorganic LDH protects the polymer from thermal oxidation, shown by enhancement of the thermal and fire properties of the corresponding polymer nanocomposites. There is a qualitative difference in the morphology of the two LDHs in PE and PMMA. ZnAl is better dispersed in PE while MgAl is better dispersed in PMMA. The zinc-containing material led to a large reduction in the peak heat release rate in polyethylene, while the magnesium-containing material led to enhancement of the fire properties of the more polar poly(methyl methacrylate). These fire properties are consistent with the morphological differences. Neither of these LDHs shows efficacy with poly(ethylene-co-butyl acrylate), which indicates a selective interaction between the LDH and the various polymers

    Material properties of nanoclay PVC composites

    Get PDF
    Nanocomposites of poly(vinyl chloride) have been prepared using both hectorite- and bentonite-based organically-modified clays. The organic modification used is tallow-triethanol-ammonium ion. The morphology of the systems was investigated using X-ray diffraction and transmission electron microscopy and these systems show that true nanocomposites, both intercalated and exfoliated systems, are produced. The mechanical properties have been evaluated and the modulus increases upon nanocomposite formation without a significant decrease in tensile strength or elongation at break. Thermal analysis studies using thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis were conducted. Thermal stability of the PVC systems was assessed using a standard thermal process evaluating the evolution of hydrogen chloride and by color development through the yellowness index. Cone calorimetry was used to measure the fire properties and especially to evaluate smoke evolution. The addition of an appropriately-modified bentonite or hectorite nanoclay leads to both a reduction in the total smoke that is evolved, and an increase in the length of time over which smoke is evolved. Along with this, a reduction in the peak heat release rate is seen. It is likely that the presence of the clay in some way interferes with the cyclization of the conjugated system formed upon HCl loss

    Nanorheology of strongly confined molecular fluids : a compter simulation study

    Get PDF
    The method of Molecular Dynamics (MD) computer simulations is employed to study ultra thin films of oligomer fluids, confined in spaces comparable to their molecular dimensions and subjected to (very) strong flows. ... Zie: Summary
    corecore