7 research outputs found

    Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima

    Full text link
    High mobility two-dimensional electron systems exhibit vanishing resistance over broad magnetic field intervals upon excitation with microwaves, with a characteristic reduction of the resistance with increasing radiation intensity at the resistance minima. Here, we report experimental results examining the voltage - current characteristics, and the resistance at the minima vs. the microwave power. The findings indicate that a non-linear V-I curve in the absence of microwave excitation becomes linearized under irradiation, unlike expectations, and they suggest a similarity between the roles of the radiation intensity and the inverse temperature.Comment: 3 color figures; publishe

    Magnetoresistive response of a high mobility 2DES under electromagnetic wave excitation

    Get PDF
    Oscillations of the resistance observed under electromagnetic wave excitation in the high mobility GaAs/AlGaAs 2DES are examined as a function of the radiation frequency and the power, utilizing an empirical lineshape based on exponentially damped sinusoids. The fit-analysis indicates the resistance oscillation frequency, F, increases with the radiation frequency, n, at the rate dF/dn = 2.37 mTesla/GHz; the damping parameter, a, is approximately independent of n at constant power; and the amplitude, A, of the oscillations grows slowly with the incident power, at a constant temperature and frequency. The lineshape appears to provide a good description of the data.Comment: presented at the 26th International Conference on the Physics of Semiconductors, Edinburgh, Scotland, 29 July - 2 August 200

    Demonstration of a 1/4 cycle phase shift in the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices

    Get PDF
    We examine the phase and the period of the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices utilizing in-situ magnetic field calibration by Electron Spin Resonance of DiPhenyl-Picryl-Hydrazal. The results confirm a ff-independent 1/4 cycle phase shift with respect to the hf=jωchf = j\hbar\omega_{c} condition for j1j \geq 1, and they also suggest a small (\approx 2%) reduction in the effective mass ratio, m/mm^{*}/m, with respect to the standard value for GaAs/AlGaAs devices.Comment: 4 pages, 4 color figure

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices

    Get PDF
    We suggest an approach for characterizing the zero-field spin splitting of high mobility two-dimensional electron systems, when beats are not readily observable in the Shubnikov-de Haas effect. The zero-field spin splitting and the effective magnetic field seen in the reference frame of the electron is evaluated from a quantitative study of beats observed in radiation-induced magnetoresistance oscillations.Comment: 4 pages, 4 color figure

    Nonlinear effects in microwave photoconductivity of two-dimensional electron systems

    Full text link
    We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which turns zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at the microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behavior similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. It is pointed to the possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations. The obtained dependences are consistent with the results of the experimental observations.Comment: 9 pages, 6 figures Labeling of the curves in Fig.3 correcte
    corecore