81 research outputs found

    Baseline Shifts do not Predict Attentional Modulation of Target Processing During Feature-Based Visual Attention

    Get PDF
    Cues that direct selective attention to a spatial location have been observed to increase baseline neural activity in visual areas that represent a to-be-attended stimulus location. Analogous attention-related baseline shifts have also been observed in response to attention-directing cues for non-spatial stimulus features. It has been proposed that baseline shifts with preparatory attention may serve as the mechanism by which attention modulates the responses to subsequent visual targets that match the attended location or feature. Using functional MRI, we localized color- and motion-sensitive visual areas in individual subjects and investigated the relationship between cue-induced baseline shifts and the subsequent attentional modulation of task-relevant target stimuli. Although attention-directing cues often led to increased background neural activity in feature specific visual areas, these increases were not correlated with either behavior in the task or subsequent attentional modulation of the visual targets. These findings cast doubt on the hypothesis that attention-related shifts in baseline neural activity result in selective sensory processing of visual targets during feature-based selective attention

    Anticipatory attention is a stable state induced by transient control mechanisms

    Get PDF
    Anticipatory attention is a neurocognitive state in which attention control regions bias neural activity in sensory cortical areas to facilitate the selective processing of incoming targets. Previous electroencephalographic (EEG) studies have identified event-related potential (ERP) signatures of anticipatory attention, and implicated alpha band (8–12 Hz) EEG oscillatory activity in the selective control of neural excitability in visual cortex. However, the degree to which ERP and alpha band measures reflect related or distinct underlying neural processes remains to be further understood. To investigate this question, we analyzed EEG data from 20 human participants performing a cued object-based attention task. We used support vector machine (SVM) decoding analysis to compare the attentional time courses of ERP signals and alpha band power. We found that ERP signals encoding attentional instructions are dynamic and precede stable attention-related changes in alpha power, suggesting that ERP and alpha power reflect distinct neural processes. We proposed that the ERP patterns reflect transient attentional orienting signals originating in higher order control areas, whereas the patterns of synchronized oscillatory neural activity in the alpha band reflect a sustained attentional state. These findings support the hypothesis that anticipatory attention involves transient top-down control signals that establish more stable neural states in visual cortex, enabling selective sensory processing

    Optimizing cognitive neuroscience experiments for separating event- related fMRI BOLD responses in non-randomized alternating designs

    Get PDF
    Functional magnetic resonance imaging (fMRI) has revolutionized human brain research. But there exists a fundamental mismatch between the rapid time course of neural events and the sluggish nature of the fMRI blood oxygen level-dependent (BOLD) signal, which presents special challenges for cognitive neuroscience research. This limitation in the temporal resolution of fMRI puts constraints on the information about brain function that can be obtained with fMRI and also presents methodological challenges. Most notably, when using fMRI to measure neural events occurring closely in time, the BOLD signals may temporally overlap one another. This overlap problem may be exacerbated in complex experimental paradigms (stimuli and tasks) that are designed to manipulate and isolate specific cognitive-neural processes involved in perception, cognition, and action. Optimization strategies to deconvolve overlapping BOLD signals have proven effective in providing separate estimates of BOLD signals from temporally overlapping brain activity, but there remains reduced efficacy of such approaches in many cases. For example, when stimulus events necessarily follow a non-random order, like in trial-by-trial cued attention or working memory paradigms. Our goal is to provide guidance to improve the efficiency with which the underlying responses evoked by one event type can be detected, estimated, and distinguished from other events in designs common in cognitive neuroscience research. We pursue this goal using simulations that model the nonlinear and transient properties of fMRI signals, and which use more realistic models of noise. Our simulations manipulated: (i) Inter-Stimulus-Interval (ISI), (ii) proportion of so-called null events, and (iii) nonlinearities in the BOLD signal due to both cognitive and design parameters. We offer a theoretical framework along with a python toolbox called deconvolve to provide guidance on the optimal design parameters that will be of particular utility when using non-random, alternating event sequences in experimental designs. In addition, though, we also highlight the challenges and limitations in simultaneously optimizing both detection and estimation efficiency of BOLD signals in these common, but complex, cognitive neuroscience designs

    Preparatory Effects of Distractor Suppression: Evidence from Visual Cortex

    Get PDF
    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene

    Enhanced response inhibition during intensive meditation training predicts improvements in self-reported adaptive socioemotional functioning.

    Full text link
    We examined the impact of training-induced improvements in self-regulation, operationalized in terms of response inhibition, on longitudinal changes in self-reported adaptive socioemotional functioning. Data were collected from participants undergoing 3 months of intensive meditation training in an isolated retreat setting (Retreat 1) and a wait-list control group that later underwent identical training (Retreat 2). A 32-min response inhibition task (RIT) was designed to assess sustained self-regulatory control. Adaptive functioning (AF) was operationalized as a single latent factor underlying self-report measures of anxious and avoidant attachment, mindfulness, ego resilience, empathy, the five major personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness to experience), diffi-culties in emotion regulation, depression, anxiety, and psychological well-being. Participants in Retreat 1 improved in RIT performance and AF over time whereas the controls did not. The control participants later also improved on both dimensions during their own retreat (Retreat 2). These improved levels of RIT performance and AF were sustained in follow-up assessments conducted approximately 5 months after the training. Longitudinal dynamic models with combined data from both retreats showed that improvement in RIT performance during training influenced the change in AF over time, which is consistent with a key claim in the Buddhist literature that enhanced capacity for self-regulation is an important precursor of changes in emotional well-being

    Beliefs about the Minds of Others Influence How We Process Sensory Information

    Get PDF
    Attending where others gaze is one of the most fundamental mechanisms of social cognition. The present study is the first to examine the impact of the attribution of mind to others on gaze-guided attentional orienting and its ERP correlates. Using a paradigm in which attention was guided to a location by the gaze of a centrally presented face, we manipulated participants' beliefs about the gazer: gaze behavior was believed to result either from operations of a mind or from a machine. In Experiment 1, beliefs were manipulated by cue identity (human or robot), while in Experiment 2, cue identity (robot) remained identical across conditions and beliefs were manipulated solely via instruction, which was irrelevant to the task. ERP results and behavior showed that participants' attention was guided by gaze only when gaze was believed to be controlled by a human. Specifically, the P1 was more enhanced for validly, relative to invalidly, cued targets only when participants believed the gaze behavior was the result of a mind, rather than of a machine. This shows that sensory gain control can be influenced by higher-order (task-irrelevant) beliefs about the observed scene. We propose a new interdisciplinary model of social attention, which integrates ideas from cognitive and social neuroscience, as well as philosophy in order to provide a framework for understanding a crucial aspect of how humans' beliefs about the observed scene influence sensory processing

    Individual working memory capacity is uniquely correlated with feature-based attention when combined with spatial attention

    Get PDF
    A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find that individuals’ working memory capacity (WMC) uniquely interacts with feature-based attention when combined with spatial attention in a cuing paradigm (Posner, 1980). Our findings suggest a positive correlation between WM and feature-based attention only within the spotlight of spatial attention. This finding lends support to the controlled attention view of working memory by demonstrating that integrated feature-based expectancies are uniquely correlated with individual performance on a working memory task
    corecore