118 research outputs found

    Advanced accident research system based on a medical and engineering data in the metropolitan area of Florence

    Get PDF
    BACKGROUND: In the metropolitan area of Florence, 62% of major traumas involve powered two wheeler rider and pillion passengers, 10% cyclists, and 7% pedestrians. The urban and extra-urban areas are the most dangerous for the vulnerable road user. In-depth investigations are needed for assessing detailed information on road accidents. This type of study has been very limited in time frame in Italy, and completely absent in the Tuscan region. Consequently a study called “In-depth Study of road Accident in FlorencE” (In-SAFE) has been initiated. METHODS: A network between the Department of Mechanics and Industrial Technologies (University of Florence) and the Intensive Care Unit of the Emergency Department (Careggi Teaching Hospital, Florence) was created with the aim of collecting information about the road accidents. The data collected includes: on-scene data, data coming from examination of the vehicles, kinematics and dynamic crash data, injuries, treatment, and injury mechanisms. Each injury is codified thorough the AIS score, localized by a three-dimensional human body model based on computer tomography slices, and the main scores are calculated. We then associate each injury with its cause and crash technical parameters. Finally, all the information is collected in the In-SAFE database. RESULTS: Patient mean age at the time of the accident was 34.6 years, and 80% were males. The ISS mean is 24.2 (SD 8.7) and the NISS mean is 33.6 (SD 10.5). The main road accident configurations are the “car-to-PTW” (25%) and “pedestrian run over” (17,9%). For the former, the main collision configuration is “head-on crash” (57%). Cyclists and PTW riders-and-pillions-passengers suffer serious injuries (AIS3+) mainly to the head and the thorax. The head (56.4%) and the lower extremities (12.7%) are the most frequently injured pedestrian body regions. CONCLUSIONS: The aim of the project is to create an in-depth road accident study with special focus on the correlation between technical parameters and injuries. An in-depth investigation team was setup and is currently active in the metropolitan area of Florence. Twenty-eight serious road accidents involving twenty-nine ICU patients are studied. PTW users, cyclist and pedestrians are the most frequently involved in metropolitan accidents

    Start-up in microgravity and local thermodynamic states of a hybrid loop thermosyphon/pulsating heat pipe

    Get PDF
    A wickless passive two phase closed loop heat transfer device especially designed for a future implementation on the heat transfer host module of the International Space Station is tested in relevant environment on board a parabolic flight. The tube internal diameter (3 mm) is larger than the static capillary threshold evaluated in normal gravity for this working fluid (FC-72), leading the device to work as a loop thermosyphon on ground and in hyper-gravity conditions, and as a Pulsating Heat Pipe when micro-gravity occurs. Novel start up tests, where the heat load has been provided after the occurrence of microgravity, show that the 20 s microgravity period is enough for the device activation and, most important, that the device activation is purely thermally induced and not affected by the previous acceleration field. Two miniaturized pressure transducers and direct fluid temperature measurement via two micro-thermocouples, allow to provide a detailed insight on the fluid local thermodynamics states both in the evaporator and in the condenser zone during microgravity. It is shown that the two-phase fluid close to the evaporator and the condenser is subjected to several degrees (up to 5 K) of superheating or subcooling. The level of subcooling seems to increase with the heat input level both in terms of temperature difference and in terms of percentage time with respect to the whole microgravity period

    Mobile Emergency, an Emergency Support System for Hospitals in Mobile Devices: Pilot Study

    Get PDF
    BACKGROUND: Hospitals are vulnerable to natural disasters, man-made disasters, and mass causalities events. Within a short time, hospitals must provide care to large numbers of casualties in any damaged infrastructure, despite great personnel risk, inadequate communications, and limited resources. Communications are one of the most common challenges and drawbacks during in-hospital emergencies. Emergency difficulties in communicating with personnel and other agencies are mentioned in literature. At the moment of emergency inception and in the earliest emergency phases, the data regarding the true nature of the incidents are often inaccurate. The real needs and conditions are not yet clear, hospital personnel are neither efficiently coordinated nor informed on the real available resources. Information and communication technology solutions in health care turned out to have a great positive impact both on daily working practice and situations. OBJECTIVE: The objective of this paper was to find a solution that addresses the aspects of communicating among medical personnel, formalizing the modalities and protocols and the information to guide the medical personnel during emergency conditions with a support of a Central Station (command center) to cope with emergency management and best practice network to produce and distribute intelligent content made available in the mobile devices of the medical personnel. The aim was to reduce the time needed to react and to cope with emergency organization, while facilitating communications. METHODS: The solution has been realized by formalizing the scenarios, extracting, and identifying the requirements by using formal methods based on unified modeling language (UML). The system and was developed using mobile programming under iOS Apple and PHP: Hypertext Preprocessor My Structured Query Language (PHP MySQL). Formal questionnaires and time sheets were used for testing and validation, and a control group was used in order to estimate the reduction of time needed to cope with emergency cases. First, we have tested the usability and the functionalities of the solution proposed, then a real trial was performed to assess the reduction in communication time and the efficiency of the solution with respect to a case without Mobile Emergency tools. RESULTS: The solution was based on the development of a mobile emergency application and corresponding server device to cope with emergencies and facilitate all the related activities and communications, such as marking the position, contacting people, and recovering the exits information. The solution has been successfully tested within the Careggi Hospital, the largest medical infrastructure in Florence and Tuscany area in Italy, thus demonstrating the validity of the identified modalities, procedures, and the reduction in the time needed to cope with the emergency conditions. The trial was not registered as the test was conducted in realistic but simulated emergency conditions. CONCLUSIONS: By analyzing the requirements for developing a mobile app, and specifically the functionalities, codes, and design of the Mobile Emergency app, we have revealed the real advantages of using mobile emergency solutions compared to other more traditional solutions to effectively handle emergency situations in hospital settings

    Developing flow pattern maps for accelerated two-phase capillary flows

    Get PDF
    The prediction offlow pattern transitions is extremely important to understand the coupling of thermal andfluiddynamic phenomena in two phase systems and it contributes to the optimum design of heat exchangers. Twophaseflow regimes have been extensively studied under controlled massflow rate and velocity. On the otherhand, less effort has been spent in the literature on the cases where theflow motion is purely thermally inducedand consequently the massflow rate or the velocity of the phases are not known a priori. In the present work,flow pattern transitions and bubble break-up and coalescence events have been investigated in a passive twophase wickless capillary loop, where the massflow rate is intrinsically not controllable. Modified Froude, Weberand Bond numbers have been introduced, considering the actual acceleration of thefluid and the length of thebubble as merit parameters for the transitions. The proposed nondimensional investigation was developed byanalysing experimental data obtained with ethanol and FC-72, as workingfluids, different heat input levels(from 9 to 24 W) as well as three different gravity levels (through a parabolicflight campaign). A new empiricaldiabaticflow pattern map for accelerated two-phase capillaryflows is presented, together with quantitativecriteria for the calculation of theflow regime transitions, defining the physic limits for the bubble coalescenceand break-up. This kind of new regime maps will be useful to the further development of comprehensive de-signing tools for passive two-phase wickless heat transfer devices
    • …
    corecore