19 research outputs found

    Flocking and reorientation transition in the 4-state active Potts model

    Full text link
    We study the active 4-state Potts model (APM) on the square lattice in which active particles have four internal states corresponding to the four directions of motion. A local alignment rule inspired by the ferromagnetic 4-state Potts model and self-propulsion via biased diffusion according to the internal particle states leads to flocking at high densities and low noise. We compute the phase diagram of the APM and explore the flocking dynamics in the region, in which the high-density (liquid) phase coexists with the low-density (gas) phase and forms a fluctuating band of coherently moving particles. As a function of the particle self-propulsion velocity, a novel reorientation transition of the phase-separated profiles from transversal to longitudinal band motion is revealed, which is absent in the Vicsek model and the active Ising model. We further construct a coarse-grained hydrodynamic description of the model which validates the results for the microscopic model

    How stickiness can speed up diffusion in confined systems

    Full text link
    The paradigmatic model for heterogeneous media used in diffusion studies is built from reflecting obstacles and surfaces. It is well known that the crowding effect produced by these reflecting surfaces slows the dispersion of Brownian tracers. Here, using a general adsorption desorption model with surface diffusion, we show analytically that making surfaces or obstacles attractive can accelerate dispersion. In particular, we show that this enhancement of diffusion can exist even when the surface diffusion constant is smaller than that in the bulk. Even more remarkably, this enhancement effect occurs when the effective diffusion constant, when restricted to surfaces only, is lower than the effective diffusivity with purely reflecting boundaries. We give analytical formulas for this intriguing effect in periodic arrays of spheres as well as undulating micro-channels. Our results are confirmed by numerical calculations and Monte Carlo simulations

    Jamming and flocking in the restricted active Potts model

    Full text link
    We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and large particle density facilitates jams due to motility-induced phase separation. Through several phase diagrams, we identify the phase boundaries separating the jammed and free-flowing phases and study the transition between these phases which provide us with both qualitative and quantitative predictions of how jamming might be delayed or dissolved. We further formulate and analyze a hydrodynamic theory for the restricted APM which predicts various features of the microscopic model

    Flocking of two unfriendly species: The two-species Vicsek model

    Full text link
    We consider the two-species Vicsek model (TSVM) consisting of two kinds of self-propelled particles, A and B, that tend to align with particles from the same species and to antialign with the other. The model shows a flocking transition that is reminiscent of the original Vicsek model: it has a liquid-gas phase transition and displays micro-phase-separation in the coexistence region where multiple dense liquid bands propagate in a gaseous background. The interesting features of the TSVM are the existence of two kinds of bands, one composed of mainly A particles and one mainly of B particles, the appearance of two dynamical states in the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the same direction, and the APF (antiparallel flocking) state in which the bands of species A and species B move in opposite directions. When PF and APF states exist in the low-density part of the coexistence region they perform stochastic transitions from one to the other. The system size dependence of the transition frequency and dwell times show a pronounced crossover that is determined by the ratio of the band width and the longitudinal system size. Our work paves the way for studying multispecies flocking models with heterogeneous alignment interactions

    De la dispersion aux vortex browniens dans des systèmes hors-équilibres confinés

    No full text
    This thesis aims to characterize the out-of-equilibrium stochastic dynamics of Brownian particles under the effectof confinement. This confinement is applied here by attractive potentials or impermeable boundaries creatingentropic barriers. First, we look at the dispersion of particles without interaction in heterogeneous media. Acloud of Brownian particles spreads over time without reaching the Boltzmann equilibrium distribution, andits spreading is then characterized by an effective diffusivity lower than the microscopic diffusivity. In a firstchapter, we are interested in the link between the confinement geometry and the dispersion in the particularcase of periodic microchannels. For this, we calculate the effective diffusivity without dimensionality reductionassumption, instead of the standard Fick-Jacobs’ approach. A classification of the different dispersion regimesis then performed for any geometry for both continuous and discontinuous channels. In a second chapter, weextend this analysis to dispersion in periodic networks of short-range attractive spherical obstacles. The presenceof an attractive potential can surprisingly increase the dispersion. We quantify this effect in the dilute regimeand then show its optimization for several potentials as well as for diffusion mediated by the surface of thespheres. Later, we study the stochastic dynamics of Brownian particles in an optical trap in the presence ofa non-conservative force created by the radiation pressure of the laser. The perturbative expression of thestationary currents describing Brownian vortices is derived for the low pressures keeping the inertial term in theunderdamped Langevin equation. The expression of the power spectrum density is also calculated to observe thetrap anisotropies and the effects of the non-conservative force. Most of analytical expressions obtained duringthis thesis are asymptotically exact and verified by numerical analysis based on the integration of the Langevinequation or the resolution of partial differential equation.Cette thèse vise à caractériser la dynamique stochastique hors-équilibre de particules browniennes sous l’effet de confinement. Ce confinement est appliqué ici par des potentiels attractifs ou des frontières imperméables créant des barrières entropiques. Dans un premier temps, nous regardons la dispersion de particules sans interactions dans les milieux hétérogènes. Un nuage de particules browniennes s’étale au cours du temps sans atteindre la distribution d’équilibre de Boltzmann, et son étalement est alors caractérisé par une diffusivité effective inférieure à la diffusivité microscopique. Dans un premier chapitre, nous nous intéressons au lien entre la géométrie de confinement et la dispersion dans le cas particulier des microcanaux périodiques. Pour cela, nous calculons la diffusivité effective sans hypothèse de réduction de dimensionnalité, contrairement à l’approche standard dite de Fick-Jacobs. Une classification des différents régimes de dispersion est alors réalisée, pour toute géométrie autant pour les canaux continus que discontinus. Dans un second chapitre, nous étendons cette analyse à la dispersion dans les réseaux périodiques d’obstacles sphériques attractifs à courte portée. La présence d’un potentiel attractif peut, de manière surprenante, augmenter la dispersion. Nous quantifions cet effet dans le régime dilué, et montrons alors son optimisation pour plusieurs potentiels ainsi que pour une diffusion médiée par la surface des sphères. Ensuite, nous étudions la dynamique stochastique de particules browniennes dans un piège optique en présence d’une force non conservative créée par la pression de radiation du laser. L’expression perturbative des courants stationnaires, décrivant les vortex browniens, est dérivée pour les basses pressions en conservant le terme inertiel dans l’équation de Langevin sous-amortie. L’expression de la densité spectrale est également calculée permettant d’observer les anisotropies du piège et les effets de la force non conservative.La plupart des expressions analytiques obtenues durant cette thèse sont asymptotiquement exactes et vérifiées par des analyses numériques basées sur l’intégration de l’équation de Langevin ou la résolution d’équation aux dérivées partielles

    From dispersion to Brownian vortices in out-of-equilibrium confined systems

    No full text
    Cette thèse vise à caractériser la dynamique stochastique hors-équilibre de particules browniennes sous l’effet de confinement. Ce confinement est appliqué ici par des potentiels attractifs ou des frontières imperméables créant des barrières entropiques. Dans un premier temps, nous regardons la dispersion de particules sans interactions dans les milieux hétérogènes. Un nuage de particules browniennes s’étale au cours du temps sans atteindre la distribution d’équilibre de Boltzmann, et son étalement est alors caractérisé par une diffusivité effective inférieure à la diffusivité microscopique. Dans un premier chapitre, nous nous intéressons au lien entre la géométrie de confinement et la dispersion dans le cas particulier des microcanaux périodiques. Pour cela, nous calculons la diffusivité effective sans hypothèse de réduction de dimensionnalité, contrairement à l’approche standard dite de Fick-Jacobs. Une classification des différents régimes de dispersion est alors réalisée, pour toute géométrie autant pour les canaux continus que discontinus. Dans un second chapitre, nous étendons cette analyse à la dispersion dans les réseaux périodiques d’obstacles sphériques attractifs à courte portée. La présence d’un potentiel attractif peut, de manière surprenante, augmenter la dispersion. Nous quantifions cet effet dans le régime dilué, et montrons alors son optimisation pour plusieurs potentiels ainsi que pour une diffusion médiée par la surface des sphères. Ensuite, nous étudions la dynamique stochastique de particules browniennes dans un piège optique en présence d’une force non conservative créée par la pression de radiation du laser. L’expression perturbative des courants stationnaires, décrivant les vortex browniens, est dérivée pour les basses pressions en conservant le terme inertiel dans l’équation de Langevin sous-amortie. L’expression de la densité spectrale est également calculée permettant d’observer les anisotropies du piège et les effets de la force non conservative.La plupart des expressions analytiques obtenues durant cette thèse sont asymptotiquement exactes et vérifiées par des analyses numériques basées sur l’intégration de l’équation de Langevin ou la résolution d’équation aux dérivées partielles.This thesis aims to characterize the out-of-equilibrium stochastic dynamics of Brownian particles under the effectof confinement. This confinement is applied here by attractive potentials or impermeable boundaries creatingentropic barriers. First, we look at the dispersion of particles without interaction in heterogeneous media. Acloud of Brownian particles spreads over time without reaching the Boltzmann equilibrium distribution, andits spreading is then characterized by an effective diffusivity lower than the microscopic diffusivity. In a firstchapter, we are interested in the link between the confinement geometry and the dispersion in the particularcase of periodic microchannels. For this, we calculate the effective diffusivity without dimensionality reductionassumption, instead of the standard Fick-Jacobs’ approach. A classification of the different dispersion regimesis then performed for any geometry for both continuous and discontinuous channels. In a second chapter, weextend this analysis to dispersion in periodic networks of short-range attractive spherical obstacles. The presenceof an attractive potential can surprisingly increase the dispersion. We quantify this effect in the dilute regimeand then show its optimization for several potentials as well as for diffusion mediated by the surface of thespheres. Later, we study the stochastic dynamics of Brownian particles in an optical trap in the presence ofa non-conservative force created by the radiation pressure of the laser. The perturbative expression of thestationary currents describing Brownian vortices is derived for the low pressures keeping the inertial term in theunderdamped Langevin equation. The expression of the power spectrum density is also calculated to observe thetrap anisotropies and the effects of the non-conservative force. Most of analytical expressions obtained duringthis thesis are asymptotically exact and verified by numerical analysis based on the integration of the Langevinequation or the resolution of partial differential equation
    corecore