4 research outputs found

    Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19)

    Get PDF
    The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without early treatment can succumb to delayed in-hospital care and death. Prompt early initiation of sequenced multidrug therapy (SMDT) is a widely and currently available solution to stem the tide of hospitalizations and death. A multipronged therapeutic approach includes 1) adjuvant nutraceuticals, 2) combination intracellular anti-infective therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet agents/anticoagulants, 5) supportive care including supplemental oxygen, monitoring, and telemedicine. Randomized trials of individual, novel oral therapies have not delivered tools for physicians to combat the pandemic in practice. No single therapeutic option thus far has been entirely effective and therefore a combination is required at this time. An urgent immediate pivot from single drug to SMDT regimens should be employed as a critical strategy to deal with the large numbers of acute COVID-19 patients with the aim of reducing the intensity and duration of symptoms and avoiding hospitalization and death

    Extending tissue preservation

    Get PDF
    A method of sustaining cells is provided. The method can include providing a non-perfluorocarbon cell storage medium, providing a pre-oxygenated liquid perfluorocarbon in contact with the storage medium, and placing the cells in contact with the storage medium but not in contact with the perfluorocarbon. Additionally, the method can result in increased corneal cell viability compared to corneal cells placed in a non-perfluorocarbon cell storage medium without being in contact with a pre-oxygenated liquid perfluorocarbon

    Extending tissue preservation

    No full text
    A method of sustaining cells is provided. The method can include providing a non-perfluorocarbon cell storage medium, providing a pre-oxygenated liquid perfluorocarbon in contact with the storage medium, and placing the cells in contact with the storage medium but not in contact with the perfluorocarbon. Additionally, the method can result in increased corneal cell viability compared to corneal cells placed in a non-perfluorocarbon cell storage medium without being in contact with a pre-oxygenated liquid perfluorocarbon

    Method and composition for treatment of ischemic neuronal reperfusion injury

    Get PDF
    Methods and compositions for treatment of, or protection from, neuropathy resulting from reperfusion injury upon reversal of an ischemic condition, comprising treatment or prophylactic treatment of the patient with an antagonist of the type 3 ryanodine receptor, such that a rise in cytosolic Ca2+ concentration is prevented. Therapeutic compositions containing dantrolene or aminodantrolene are administered to the patient to prevent a rise in cytosolic Ca2+ that would otherwise result in Ca2+ -mediated neuronal damage. Treatment of ischemic optic neuropathy by this method is shown, and the methods and compositions presented are also applicable to other ischemic reperfusion neuropathies, such as stroke, reperfusion injury after TPA treatment/carotid endarterectomy, seizures, and excitotoxic retinal damage in glaucoma
    corecore