29 research outputs found

    Phase stability and dynamics of entangled polymer-nanoparticle composites.

    Get PDF
    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host

    Liquid-mesophase-solid transitions: systematics of a density-wave theory

    Get PDF
    The density-wave theory of Ramakrishnan and Yussouff is used to study phase transitions between liquid, liquid-crystalline, and crystalline phases. The different phases considered are liquid, nematic, smectic, discotic, bcc plastic crystal, orientationally ordered bcc, and a new incommensurate bcc crystal with orientational order. The direct correlation function, required as an input for the theory, is expressed approximately in terms of five generalized Fourier coefficients. The theory is then used to obtain sections through the phase diagram in the five-dimensional space of these coefficients. Simple approximations for the direct correlation function of hard ellipsoids of revolution are used to compare these phase diagrams with those obtained from experiments and numerical simulations. Molecular-field theories of smectic and discotic ordering are reexamined, and, given the potentials they use, it is shown that an orientationally ordered bcc crystal has a lower free energy than either the smectic or the discotic phase. The conditions required to stabilize smectic and discotic phases are examined

    Pair-Interactions of Self-Propelled SiO2-Pt Janus Colloids

    Full text link
    Driven by the necessity to achieve a thorough comprehension of the bottom-up fabrication process of functional materials, this experimental study investigates the pair-wise interactions or collisions between chemically active SiO2-Pt Janus Colloids. These collisions are categorized based on the Janus colloids' orientations before and after they make physical contact. In addition to the hydrodynamic interactions, the Janus colloids are also known to affect each other's chemical field, resulting in chemophoretic interactions, which depend on the reactive nature of the metal site. These interactions lead to a noticeable decrease in particle speed and changes in orientation, which depends on the duration of contact, yielding different collision types. Our findings reveal distinct configurations of contact during collisions, whose mechanisms and likelihood is found to be dependent primarily on the chemical interactions. Such estimates of collision and their characterization in dilute suspensions shall have key impact in determining the arrangement and time scales of dynamical structures and assemblies of denser suspensions, and potentially the functional materials of the future.Comment: 15 pages, 11 figures
    corecore