34 research outputs found

    Systematic variation in gene expression patterns in human cancer cell lines

    Get PDF
    We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    The Drosophila tumor suppressor gene lethal(2)giant larvae is required for the emission of the Decapentaplegic signal

    No full text
    International audienceThe Drosophila tumor suppressor gene lethal(2) giant larvae (lgl) encodes a cytoskeletal protein required for the change in shape and polarity acquisition of epithelial cells, and also for asymmetric division of neuroblasts. We show here that lgl participates in the emission of Decapentaplegic (Dpp), a member of the transforming growth factor beta (TGFbeta) family, in various developmental processes. During embryogenesis, lgl is required for the dpp-dependent transcriptional activation of zipper (zip), which encodes the non-muscle myosin heavy chain (NMHC), in the dorsalmost ectodermal cells - the leading edge cells. The embryonic expression of known targets of the dpp signaling pathway, such as labial or tinman was abolished or strongly reduced in lgl mutants. lgl mutant cuticles exhibited phenotypes resembling those observed in mutated partners of the dpp signaling pathway. In addition, lgl was required downstream of dpp and upstream of its receptor Thickveins (Tkv) for the dorsoventral patterning of the ectoderm. During larval development, the expression of spalt, a dpp target, was abolished in mutant wing discs, while it was restored by a constitutively activated form of Tkv (Tkv(Q253D)). Taking into account that the activation of dpp expression was unaffected in the mutant, this suggests that lgl function is not required downstream of the Dpp receptor. Finally, the function of lgl responsible for the activation of Spalt expression appeared to be required only in the cells that produce Dpp, and lgl mutant somatic clones behaved non autonomously. We therefore position the activity of lgl in the cells that produce Dpp, and not in those that respond to the Dpp signal. These results are consistent with a same role for lgl in exocytosis and secretion as that proposed for its yeast ortholog sro7/77 and lgl might function in parallel or independently of its well-documented role in the control of epithelial cell polarity

    A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF.

    Get PDF
    Expression of the gene encoding the antifungal peptide Drosomycin in Drosophila adults is controlled by the Toll signaling pathway. The Rel proteins Dorsal and DIF (Dorsal-related immunity factor) are possible candidates for the transactivating protein in the Toll pathway that directly regulates the drosomycin gene. We have examined the requirement of Dorsal and DIF for drosomycin expression in larval fat body cells, the predominant immune-responsive tissue, using the yeast site-specific flp/FRT recombination system to generate cell clones homozygous for a deficiency uncovering both the dorsal and the dif genes. Here we show that in the absence of both genes, the immune-inducibility of drosomycin is lost but can be rescued by overexpression of either dorsal or dif under the control of a heat-shock promoter. This result suggests a functional redundancy between both Rel proteins in the control of drosomycin gene expression in the larvae of Drosophila. Interestingly, the gene encoding the antibacterial peptide Diptericin remains fully inducible in the absence of the dorsal and dif genes. Finally, we have used fat body cell clones homozygous for various mutations to show that a linear activation cascade Spaetzle--> Toll-->Cactus-->Dorsal/DIF leads to the induction of the drosomycin gene in larval fat body cells

    Mammalian Homolog of Drosophila Tumor Suppressor Lethal (2) Giant Larvae Interacts with Basolateral Exocytic Machinery in Madin-Darby Canine Kidney Cells

    Get PDF
    The Drosophila tumor suppressor protein lethal (2) giant larvae [l(2)gl] is involved in the establishment of epithelial cell polarity during development. Recently, a yeast homolog of the protein has been shown to interact with components of the post-Golgi exocytic machinery and to regulate a late step in protein secretion. Herein, we characterize a mammalian homolog of l(2)gl, called Mlgl, in the epithelial cell line Madin-Darby canine kidney (MDCK). Consistent with a role in cell polarity, Mlgl redistributes from a cytoplasmic localization to the lateral membrane after contact-naive MDCK cells make cell-cell contacts and establish a polarized phenotype. Phosphorylation within a highly conserved region of Mlgl is required to restrict the protein to the lateral domain, because a recombinant phospho-mutant is distributed in a nonpolar manner. Membrane-bound Mlgl from MDCK cell lysates was coimmunoprecipitated with syntaxin 4, a component of the exocytic machinery at the basolateral membrane, but not with other plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins that are either absent from or not restricted to the basolateral membrane domain. These data suggest that Mlgl contributes to apico-basolateral polarity by regulating basolateral exocytosis
    corecore