20 research outputs found

    A scattering rate approach to the understanding of absorption line broadening in near-infrared AlGaN/GaN quantum wells

    No full text
    There has been much interest in the advancement of III-Nitride growth technology to fabricate AlGaN/GaN heterostructures for intersubband transitions (ISBTs). The large conduction band offset in these structures (up to 2 eV) allows transition energies in the near- to the far-infrared region, which have applications from telecommunications, such as in all-optical switches, to infra-red detectors for sensing and imaging. To date, ISBT electroluminescence has been elusive and absorption measurements remain an important method to verify band structure calculations. The growth quality can be inferred from the absorption spectrum, which will have line broadening with contributions that are both inhomogeneous (large-scale interface roughness, and non-parabolicity) and homogeneous (electron scattering related lifetime broadening). In the present work we calculated the contributions of various homogeneous broadening mechanisms (electron interaction with longitudinal-optical (LO) phonons, acoustic phonons, impurities and alloy disorder) to the full linewidth, and also the contribution of band non-parabolicity, which contributes to the inhomogeneous broadening. Calculations are then compared to the measured absorption spectra of several samples

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≥2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    The Effect of Growth Stoichiometry on the GaN Dislocation Core Structure

    No full text

    Quantum and transport lifetimes in a tunable low-density AlGaN/GaN two-dimensional electron gas

    No full text
    We experimentally determine the density dependence of the transport lifetime (τ t) obtained from low-field Hall measurements and the quantum lifetime (τ q) derived from analysis of the amplitude of Shubnikov-de Haas oscillations in a tunable high mobility two-dimensional electron gas (2DEG) in a Al 0.06Ga 0.94N/GaN heterostructure. Using an insulated gate structure, we are able to tune the 2DEG density from 2 × 10 11 to 2 × 10 12 cm -2, and thus, monitor the evolution of the scattering times in a single sample at T=0.3 K in a previously unexplored density regime. The transport lifetime τ t is a strong function of electron density, increasing from ∼2.7 ps at n e=2 × 10 11 cm -2 to ∼11 ps at n e= 1.75 × 10 12cm -2. Conversely, we find that the quantum scattering time τ q is relatively insensitive to changes in electron density over this range. The data suggest that dislocation scattering accounts for the density dependence of τ q as well as τ t in our low-density sample. © 2004 American Institute of Physics

    Comparative study of intersubband absorption in AlGaN/GaN and AlInN/GaN superlattices: Impact of material inhomogeneities

    No full text
    We report a systematic and quantitative study of near-infrared intersubband absorption in strained AlGaN/GaN and lattice-matched AlInN/GaN superlattices grown by plasma-assisted molecular-beam epitaxy as a function of Si-doping profile with and without δ doping. For AlGaN/GaN, we obtained good theoretical agreement with experimental measurements of transition energy, integrated absorbance and linewidth by considering many-body effects, interface roughness, and calculations of the transition lifetime that include dephasing. For the AlInN/GaN system, experimental measurements of the integrated absorbance due to the superlattice transitions produced values more than one order of magnitude lower than AlGaN/GaN heterostructures at similar doping levels. Furthermore, observed transition energies were roughly 150 meV higher than expected. The weak absorption and high transition energies measured in these structures is attributed to columnar alloy inhomogeneity in the AlInN barriers observed in high-angle annular dark-field scanning transmission electron microscopy. We simulated the effect of these inhomogeneities using three-dimensional band-structure calculations. The inhomogeneities were modeled as AlInN nanorods with radially varying In composition embedded in the barrier material of the superlattice. We show that inclusion of the nanorods leads to the depletion of the quantum wells (QWs) due to localization of charge carriers in high-In-containing regions. The higher energy of the intersubband transitions was attributed to the relatively uniform regions of the QWs surrounded by high Al (95%) composition barriers. The calculated transition energy assuming Al0.95In0.05N barriers was in good agreement with experimental results
    corecore