659 research outputs found

    Relative drifts and temperature anisotropies of protons and α\alpha particles in the expanding solar wind -- 2.5D hybrid simulations

    Full text link
    We perform 2.5D hybrid simulations to investigate the origin and evolution of relative drift speeds between protons and α\alpha particles in the collisionless turbulent low-β\beta solar wind plasma. We study the generation of differential streaming by wave-particle interactions and absorption of turbulent wave spectra. Next we focus on the role of the relative drifts for the turbulent heating and acceleration of ions in the collisionless fast solar wind streams. The energy source is given by an initial broad-band spectrum of parallel propagating Alfv\'en-cyclotron waves, which co-exists with the plasma and is self-consistently coupled to the perpendicular ion bulk velocities. We include the effect of a gradual solar wind expansion, which cools and decelerates the minor ions. This paper for the first time considers the combined effect of self-consistently initialized dispersive turbulent Alfv\'enic spectra with differentially streaming protons and α\alpha particles in the expanding solar wind outflows within a 2.5D hybrid simulation study. In the non-expanding wind, we find a threshold value of the differential streaming Vαp=0.5VAV_{\alpha p} = 0.5 V_\mathrm{A}, for which the relative drift speed remains nearly steady. For ions, streaming below the threshold value, the waves act to increase the magnitude of the relative drift speed. Ions, which stream faster than the threshold value become subject to nonlinear streaming instability and as the system evolves their bulk velocities decrease. We find that the solar wind expansion strongly affects the relative drift speeds and significantly slows down both ion species for all values of the relative drift speeds considered in this study.Comment: 11 pages, 13 figures, submitted to A&

    The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies

    Full text link
    Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer's framework. On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of the solution space. On the computational side, we establish dichotomy theorems for the complexity of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the tractable side - which includes but is not limited to all problems with polynomial time algorithms for satisfiability - is in P for the st-connectivity question, and in coNP for the connectivity question. The diameter of components can be exponential for the PSPACE-complete cases, whereas in all other cases it is linear; thus, small diameter and tractability of the connectivity problems are remarkably aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the subgraphs induced by the solution space possess certain good structural properties, whereas in the intractable cases, the subgraphs can be arbitrary

    Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    Full text link
    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.Comment: 13 pages, no figures; AIP Conference Proceedings 1356, Proceedings of the School and Workshop on Space Plasma Physics (1--12 September 2010, Kiten, Bulgaria), American Institute of Physics, Melville, NY, 201

    THE RADIOPROTECTIVE EFFECT OF PHASEOLUS VULGARIS PHYTOHEMAGGLUTININS EXERTED ON VITIA FABA GERMS

    Get PDF
    No abstract

    ANTIGENIC UNITY BETWEEN PHYTOHEMAGGLUTININ OF PHASEOLUS VULGARIS AND SOME BACTERIA AND VIRA

    Get PDF
    No abstract

    Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    Get PDF
    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields
    • …
    corecore