842 research outputs found

    Silver fir (Abies alba Mill.) is able to thrive and prosper under meso-Mediterranean conditions

    Get PDF
    The potential ecological envelope of silver fir (Abies alba Mill.) based on its present distribution suggests a high suitability for moist rather than warm and dry environments. This contrasts with paleoecological evidence reporting its former presence at low elevations under meso-Mediterranean conditions. In this study, we evaluated the growth performance of silver fir at low elevation (20–60 m a.s.l.) under meso-Mediterranean climatic conditions in Tuscany (central Italy). We conducted a dendroecological analysis on Abies alba trees along a geomorphological gradient (from depression to upper slope conditions). Climate-growth relationships were assessed by means of correlations, response functions, pointer years, and superposed epoch analysis. Silver fir was found to grow and regenerate well in these stands mixed with evergreen (e.g., Quercus ilex L.) and thermophilous deciduous Mediterranean tree species (e.g., Q. cerris L.). Summer drought was the most growth-influencing factor, with immediate (i.e., current season) negative impacts on tree-ring widths (TRW). No significant impacts were observed in the four years following extreme summer droughts, but the TRW series (which started between the 1930s and 1950s) showed a growth decline since the mid-1990s that is likely drought-related. Our results show that, provided there is a sufficiently large soil water holding capacity, silver fir provenances exist which are able to withstand Mediterranean summer droughts, can naturally and regularly regenerate in these systems, and may even dominate over typical meso-Mediterranean species. As long as annual precipitation is not too low (i.e., >850 mm) and summer drought conditions not too extreme (i.e., less than three months), silver fir has thus the potential to thrive under warm Mediterranean conditions.ISSN:0378-1127ISSN:1872-704

    Cyclooxygenase-2 inhibitors. 1,5-diarylpyrrol-3-acetic esters with enhanced inhibitory activity toward cyclooxygenase-2 and improved cyclooxygenase-2/cyclooxygenase-1 selectivity.

    Get PDF
    he important role of cyclooxygenase-2 (COX-2) in the pathogenesis of inflammation and side effect limitations of current COX-2 inhibitor drugs illustrates a need for the design of new compounds based on alternative structural templates. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, along with their inhibitory activity toward COX enzymes. Several compounds proved to be highly selective COX-2 inhibitors and their affinity data were rationalized through docking simulations. In this paper, we describe the synthesis of new 1,5-diarylpyrrole derivatives that were assayed for their in vitro inhibitory effects toward COX isozymes. Among them, the ethyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1-[3-fluorophenyl]-1H-pyrrol-3- acetate (1d), which was the most potent and COX-2 selective compound, also showed a very interesting in vivo anti-inflammatory and analgesic activity, laying the foundations for developing new lead compounds that could be effective agents in the armamentarium for the management of inflammation and pain

    Autopsy findings in COVID-19-related deaths. A literature review

    Get PDF
    Although many clinical reports have been published, little is known about the pathological post-mortem findings from people who have died of the novel coronavirus disease. The need for postmortem information is urgent to improve patient management of mild and severe illness, and treatment strategies. The present systematic review was carried out according to the Preferred Reporting Items for Systematic Review (PRISMA) standards. A systematic literature search and a critical review of the collected studies were conducted. An electronic search of PubMed, Science Direct Scopus, Google Scholar, and Excerpta Medica Database (EMBASE) from database inception to June 2020 was performed. We found 28 scientific papers; the total amount of cases is 341. The major histological feature in the lung is diffuse alveolar damage with hyaline membrane formation, alongside microthrombi in small pulmonary vessels. It appears that there is a high incidence of deep vein thrombosis and pulmonary embolism among COVID-19 decedents, suggesting endothelial involvement, but more studies are needed. A uniform COVID-19 post-mortem diagnostic protocol has not yet been developed. In a time in which international collaboration is essential, standardized diagnostic criteria are fundamental requirements

    Novel ester and acid derivatives of the 1,5-diarylpyrrole scaffold as anti-inflammatory and analgesic agents. Synthesis and in vitro and in vivo biological evaluation.

    Get PDF
    A new generation of selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) was developed to circumvent the major side effects of cyclooxygenase-1 (COX-1) and COX-2 inhibitors (stomach ulceration and nephrotoxicity). As a consequence, coxibs are extremely valuable in treating acute and chronic inflammatory conditions. However, the use of coxibs, such as rofecoxib (Vioxx), was discontinued because of the high risk of cardiovascular adverse events. More recent clinical findings highlighted how the cardiovascular toxicity of coxibs could be mitigated by an appropriate COX-1 versus COX-2 selectivity. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, selective for COX-2. Here, we describe the synthesis of new1,5-diarylpyrroles along with their inhibitory effects in vitro, ex vivo, and in vivo toward COX isoenzymes and their analgesic activity. Isopropyl-2-methyl-5-[4- (methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole-3-acetate (10a), a representative member of the series, was selected for pharmacokinetic and metabolic studies

    Novel ester and acid derivatives of the 1,5-diarylpyrrole scaffold as anti-inflammatory and analgesic agents. Synthesis and in vitro and in vivo biological evaluation.

    Get PDF
    A new generation of selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) was developed to circumvent the major side effects of cyclooxygenase-1 (COX-1) and COX-2 inhibitors (stomach ulceration and nephrotoxicity). As a consequence, coxibs are extremely valuable in treating acute and chronic inflammatory conditions. However, the use of coxibs, such as rofecoxib (Vioxx), was discontinued because of the high risk of cardiovascular adverse events. More recent clinical findings highlighted how the cardiovascular toxicity of coxibs could be mitigated by an appropriate COX-1 versus COX-2 selectivity. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, selective for COX-2. Here, we describe the synthesis of new 1,5-diarylpyrroles along with their inhibitory effects in vitro, ex vivo, and in vivo toward COX isoenzymes and their analgesic activity. Isopropyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole-3-acetate (10a), a representative member of the series, was selected for pharmacokinetic and metabolic studies
    • …
    corecore