6 research outputs found

    A Psychometrically Robust Screening Tool To Rapidly Identify Socially Impaired Monkeys In The General Population

    No full text
    Naturally low-social rhesus macaques exhibit social impairments with direct relevance to autism spectrum disorder (ASD). To more efficiently identify low-social individuals in a large colony, we exploited, refined, and psychometrically assessed the macaque Social Responsiveness Scale (mSRS), an instrument previously derived from the human ASD screening tool. We performed quantitative social behavior assessments and mSRS ratings on a total of N = 349 rhesus macaques (Macaca mulatta) housed in large, outdoor corrals. In one cohort (N = 116), we conducted inter-rater and test-retest reliabilities, and in a second cohort (N = 233), we evaluated the convergent construct and predictive validity of the mSRS-Revised (mSRS-R). Only 17 of the original 36 items demonstrated inter-rater and test-retest reliability, resulting in the 17-item mSRS-R. The mSRS-R showed strong validity: mSRS-R scores robustly predicted monkeys' social behavior frequencies in home corrals. Monkeys that scored 1.5 standard deviations from the mean on nonsocial behavior likewise exhibited significantly more autistic-like traits, and mSRS-R scores predicted individuals' social classification (low-social vs. high-social) with 96% accuracy (likelihood ratio chi-square = 25.07; P < 0.0001). These findings indicate that the mSRS-R is a reliable, valid, and sensitive measure of social functioning, and like the human SRS, can be used as a high-throughput screening tool to identify socially impaired individuals in the general population. LAY SUMMARY: Variation in autistic traits can be measured in humans using the Social Responsiveness Scale (SRS). Here, we revised this scale for rhesus macaques (i.e., the mSRS-R), and showed that macaques exhibit individual differences in mSRS-R scores, and at the behavioral extremes, low-social vs. high-social monkeys exhibit more autistic-like traits. These results suggest that the mSRS-R can be used as a screening tool to rapidly and accurately identify low-social monkeys in the general population. Autism Res 2020, 13: 1465-1475. © 2020 International Society for Autism Research, Wiley Periodicals, Inc

    Autism-associated biomarkers: test-retest reliability and relationship to quantitative social trait variation in rhesus monkeys.

    No full text
    BackgroundRhesus monkeys (Macaca mulatta) exhibit pronounced individual differences in social traits as measured by the macaque Social Responsiveness Scale-Revised. The macaque Social Responsiveness Scale was previously adapted from the Social Responsiveness Scale, an instrument designed to assess social and autistic trait variation in humans. To better understand potential biological underpinnings of this behavioral variation, we evaluated the trait-like consistency of several biological measures previously implicated in autism (e.g., arginine vasopressin, oxytocin, and their receptors, as well as ERK1/2, PTEN, and AKT(1-3) from the RAS-MAPK and PI3K-AKT pathways). We also tested which biological measures predicted macaque Social Responsiveness Scale-Revised scores.MethodsCerebrospinal fluid and blood samples were collected from N = 76 male monkeys, which, as a sample, showed a continuous distribution on the macaque Social Responsiveness Scale-Revised. In a subset of these subjects (n = 43), samples were collected thrice over a 10-month period. The following statistical tests were used: "Case 2A" intra-class correlation coefficients of consistency, principal component analysis, and general linear modeling.ResultsAll biological measures (except AKT) showed significant test-retest reliability within individuals across time points. We next performed principal component analysis on data from monkeys with complete biological measurement sets at the first time point (n = 57), to explore potential correlations between the reliable biological measures and their relationship to macaque Social Responsiveness Scale-Revised score; a three-component solution was found. Follow-up analyses revealed that cerebrospinal fluid arginine vasopressin concentration, but no other biological measure, robustly predicted individual differences in macaque Social Responsiveness Scale-Revised scores, such that monkeys with the lowest cerebrospinal fluid arginine vasopressin concentration exhibited the greatest social impairment. Finally, we confirmed that this result held in the larger study sample (in which cerebrospinal fluid arginine vasopressin values were available from n = 75 of the subjects).ConclusionsThese findings indicate that cerebrospinal fluid arginine vasopressin concentration is a stable trait-like measure and that it is linked to quantitative social trait variation in male rhesus monkeys

    Exhaled aerosol increases with COVID-19 infection, age, and obesity

    No full text
    COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine

    Exposure modality influences viral kinetics but not respiratory outcome of COVID-19 in multiple nonhuman primate species.

    No full text
    The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies
    corecore