16 research outputs found
A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons
Metal organic framework (MOF) membranes have gained more attentions due to their abilities in various applications in gas and liquid separations. The majority of works are related to Zeolite imidazolate frameworks-8 (ZIF-8). This is often attributed to its high stability, easy synthesis, and good gas separation. They have gained a significant interest of scientists and have the aptitude to be utilized in other gas separations and applications. Indeed, the investigation of the literatures revealed that ZIF-8 and its derivatives have a substantial attention due to of its good properties as its large specific surface area, âgate openingâ mechanism, etc âŠ, which makes them special in adsorption/membrane separations and other associated aspects. The applications of ZIF-8 based materials for carbon dioxide (CO2) gas adsorption and the C3- and C4- isomersâ (propane, propylene, n-butane and isobutane) gas separation also are discussed. Statistical physics approach was applied throughout this review as a perfect tool to discuss and understand properties of ZIF-8, especially the âgate opening pressureâ. Subsequently, this review points to present highlights and applications of ZIF-8 and its derivatives for the purpose of carbon dioxide and hydrocarbon separations. Additionally, this study considers recent advancements of ZIF-8 synthesis and prospects for its use in gas separation. This study can help to better understand effective features of a sorbent and methods for gas separation process. As theoretical discussions are referred to as a crucial issue, this is the first study on Zeolitic Imidazolate Framework (ZIF) membrane application, which provides the use of statistical physics theoretical approach and considers the effect of nanogate opening pressures.Open Access funding provided by the Qatar National Library.Scopus2-s2.0-8511739324
Non-linear analysis in estimating model parameters for thymol adsorption onto hydroxyiron-clays
International audienc
Modeling of essential oils adsorption onto clays towards a better understanding of their interactions
International audienc
New insights in the adsorption of Bovine Serum Albumin onto carbon nanoparticles derived from organic resin: Experimental and theoretical studies
International audienc
Novel insights into the adsorption mechanism of methylene blue onto organo-bentonite: Adsorption isotherms modeling and molecular simulation
International audienceThe aim of this study is to investigate the suitability of raw and organo-bentonite for the selective adsorption of methylene blue (MB) from an aqueous solution at three temperatures. SEM characterization confirms the adsorption of MB since there is change in the morphology of the sample after adsorption process. The organo-bentonite allows a higher MB removal than raw-bentonite with a maximum adsorption capacity equal to 321âŻmg/g at 60âŻÂ°C. This may be attributed to the carbonyl groups deriving from the rarasaponin used for the preparation of organo-bentonite. The adsorption process of MB is better described by monolayer model coupled to real gas (MMRG) rather than Langmuir and Freundlich models. It was found that the statistical physics approach covers the above-mentioned models. The organo-bentonite showed the highest adsorption energies (2.40; 2.73 and 21.3 kJ/mol) compared to the raw-bentonite (1.22; 2.44 and 15.2 kJ/mol) at 30°C, 45°C and 60°C, confirming the effect of carbonyl group from rarasaponin. MMRG model also allows the calculation of the Isosteric heat of adsorption. According to the retrieved Gibbs free energy values, the adsorption process was noticed spontaneous in nature. Molecular dynamics simulation is conducted to reinforce the results obtained from statistical physics approach. Starting from attraction energy results, it can be concluded that adsorption of MB is located on the bentonite part of the adsorbent, as well as on the rarasaponin part. The interactions that occurred during MB adsorption are identified by MD simulations as Van der Waals forces, which are repulsive for rarasaponin/MB with a stronger electrostatic interaction and attractive for bentonite/MB with zero electrostatic forces. Hydrogen bonding is found to be equal to zero for both systems
Optimization of Hydrothermal and Diluted Acid Pretreatments of Tunisian Luffa cylindrica (L.) Fibers for 2G Bioethanol Production through the Cubic Central Composite Experimental Design CCD: Response Surface Methodology
This paper opens up a new issue dealing with Luffa cylindrica (LC) lignocellulosic biomass recovery in order to produce 2G bioethanol. LC fibers are composed of three principal fractions, namely, α-cellulose (45.80%ââ± 1.3), hemicelluloses (20.76%ââ± 0.3), and lignins (13.15%ââ± 0.6). The optimization of LC fibers hydrothermal and diluted acid pretreatments duration and temperature were achieved through the cubic central composite experimental design CCD. The pretreatments optimization was monitored via the determination of reducing sugars. Then, the 2G bioethanol process feasibility was tested by means of three successive steps, namely, LC fibers hydrothermal pretreatment performed at 96°C during 54 minutes, enzymatic saccharification carried out by means of a commercial enzyme AP2, and the alcoholic fermentation fulfilled with Saccharomyces cerevisiae. LC fibers hydrothermal pretreatment liberated 33.55âg/kg of reducing sugars. Enzymatic hydrolysis allowed achieving 59.4âg/kg of reducing sugars. The conversion yield of reducing sugar to ethanol was 88.66%. After the distillation step, concentration of ethanol was 1.58% with a volumetric yield about 70%
On the computer simulations of carbon nanoparticles porosity: statistical mechanics model for CO2 and N2 adsorption isotherms
International audienc
Optimization of Hydrothermal and Diluted Acid Pretreatments of Tunisian Luffa cylindrica (L.) Fibers for 2G Bioethanol Production through the Cubic Central Composite Experimental Design CCD: Response Surface Methodology
This paper opens up a new issue dealing with Luffa cylindrica (LC) lignocellulosic biomass recovery in order to produce 2G bioethanol. LC fibers are composed of three principal fractions, namely, -cellulose (45.80% ± 1.3), hemicelluloses (20.76% ± 0.3), and lignins (13.15% ± 0.6). The optimization of LC fibers hydrothermal and diluted acid pretreatments duration and temperature were achieved through the cubic central composite experimental design CCD. The pretreatments optimization was monitored via the determination of reducing sugars. Then, the 2G bioethanol process feasibility was tested by means of three successive steps, namely, LC fibers hydrothermal pretreatment performed at 96 â C during 54 minutes, enzymatic saccharification carried out by means of a commercial enzyme AP2, and the alcoholic fermentation fulfilled with Saccharomyces cerevisiae. LC fibers hydrothermal pretreatment liberated 33.55 g/kg of reducing sugars. Enzymatic hydrolysis allowed achieving 59.4 g/kg of reducing sugars. The conversion yield of reducing sugar to ethanol was 88.66%. After the distillation step, concentration of ethanol was 1.58% with a volumetric yield about 70%
In situ studies of bovine serum albumin adsorption onto functionalized polystyrene latices monitored with a quartz crystal microbalance technique
International audienc
Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: A multi-model's approach
The fundamental phenomena involved in methylene blue adsorption onto three different activated car- bons (a raw adsorbent and two samples derived from either chemical or thermal treatment of the raw sample) are elucidated by coupling different multi-physics modeling approaches. Statistical physics ap- proach leads to understand that methylene blue adsorption is mainly affected by the porosity of sorbents rather than their functional groups. Electrostatic interactions, Van der Waals forces or hydrogen bonding might occur between dye cations and carboxylate anions on adsorbent surface. The quantum chemical calculations suggest that dispersive interactions and pore characteristics of the activated carbon derived from thermal treatment predominantly contribute. The investigated reactive sites show that the same preferable sites for both electrophilic and nucleophilic attacks are detected for the sample derived from thermal treatment, allowing explaining the best performances of this adsorbent. Finally, the most sta- ble energy configuration of methylene blue adsorption on activated carbon is obtained by Monte Carlo simulations