3 research outputs found
A Comparison of Computed Tomography Measures for Diagnosing Cervical Spinal Stenosis Associated with Myelopathy: A Case-Control Study
Study DesignRetrospective comparative study.PurposeTo assess differences in computed tomography (CT) imaging parameters between patients with cervical myelopathy and controls.Overview of LiteratureThere is a lack of information regarding the best predictor of symptomatic stenosis based on osseous canal dimensions. We postulate that smaller osseous canal dimensions increase the risk of symptomatic central stenosis.MethodsCT images and medical records of patients with cervical myelopathy (19 patients, 8 males; average age, 64.4±13.4 years) and controls (18 patients, 14 males; average age, 60.4±11.0 years) were collected. A new measure called the laminar roof pitch angle (=angle between the lamina) was conducted along with linear measures, ratios and surrogates of canal perimeter and area at each level C2-C7 (222 levels). Receiver-operator curves were used to assess the diagnostic value of each. Rater reliability was assessed for the measures.ResultsThe medial-lateral (ML) diameter (at mid-pedicle level) and calculated canal area (=anterior-posterior.×ML diameters) were the most accurate and highly reliable. ML diameter below 23.5 mm and calculated canal area below 300 mm2 generated 82% to 84% sensitivity and 67% to 68% sensitivity. No significant correlations were identified between age, height, weight, body mass in dex and gender for each of the CT measures.ConclusionsCT measures including ML dimensions were most predictive. This study is the first to identify an important role for the ML dimension in cases of slowly progressive compressive myelopathy. A ML reserve may be protective when the canal is progressively compromised in the anterior-posterior dimension
Recommended from our members
Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: A bed rest study with identical twins
Introduction: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. Materials and Methods: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. Results: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p < 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. Conclusions: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative effects of simulated weightlessness on bone metabolism. This protocol may pave the way to counteracting bone loss during spaceflight and may provide valuable information about normal and abnormal bone physiology here on Earth