5 research outputs found

    Survival of a native toxigenic isolate of Listeria monocytogenes CFR 1302 during storage of milk-based foods can be a potential cause of health risk

    No full text
    The ability of a native toxigenic culture of Listeria monocytogenes CFR 1302 to survive and elaborate associated toxigenic trait in ice cream and mango pulp-based lactic fermented milk was studied. The culture of L. monocytogenes inoculated at two initial levels of 4.6 and 5.6 log10 CFU/ml almost remained unaltered during storage of the food products. However, in both the milk-based products, a marginal increase in viable population was observed during 2–4 d of storage as against the initial inoculum levels. The toxigenic trait, listeriolysin “O” was detected by PCR based on species-specific hlyA primers in the two products without any step of enrichment. The positive amplification in PCR was evidenced with initial population levels of 6.3, 7.3, and 8.3 log10 CFU/ml of the respective products. In culture broth, PCR detection was positive with the lowest level of 2.3 log10 CFU/ml. The established pathogenic strain of L. monocytogenes Scott A used as a reference culture revealed almost the same behavior to that of native culture in the food products. The findings of present study bring into focus that, irrespective of low storage temperatures, there exists the potential health hazard associated with foods initially contaminated with risk population levels of L. monocytogenes

    Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli

    No full text
    Papain (from papaya latex; EC 3.4.22.2) and Pronase (from Streptomyces griseus; EC 3.4.24.31) caused optimum depolymerization of chitosan at pH 3.5 and 37 °C, resulting in LMMC (low molecular mass chitosan) and chito-oligomeric–monomeric mixture. The yield of the latter was 14–16% and 14–19% respectively for papain- and Pronase-catalysed reactions, depending on the reaction time (1–5 h). HPLC revealed the presence of monomer(s) and oligomers of DP (degree of polymerization) 2–6, which was also confirmed by matrix-assisted laser-desorption ionization–time-of-flight MS. Along with the chito-oligomers, the appearance of only GlcNAc (N-acetylglucosamine) in Pronase-catalysed chitosanolysis was indicative of its different action pattern compared with papain. Fourier-transform infrared, liquid-state (13)C-NMR spectra and CD analyses of chito-oligomeric–monomeric mixture indicated the release of GlcNAc/GlcNAc-rich oligomers. The monomeric sequence at the non-reducing ends of chito-oligomers was elucidated using N-acetylglucosaminidase. The chito-oligomeric–monomeric mixture showed better growth inhibitory activity towards Bacillus cereus and Escherichia coli compared with native chitosan. Optimum growth inhibition was observed with chito-oligomers of higher DP having low degree of acetylation. The latter caused pore formation and permeabilization of the cell wall of B. cereus, whereas blockage of nutrient flow due to the aggregation of chito-oligomers–monomers was responsible for the growth inhibition and lysis of E. coli, which were evidenced by scanning electron microscopy analysis. The spillage of cytoplasmic enzymes and native PAGE of the cell-free supernatant of B. cereus treated with chito-oligomeric–monomeric mixture further confirmed bactericidal activity of the latter. Use of papain and Pronase, which are inexpensive and easily available, for chitosanolysis, is of commercial importance, as the products released are of considerable biomedical value
    corecore