91 research outputs found

    The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1

    Get PDF
    I use recent photometric and stellar velocity dispersion measurements of the super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M ratios, together with population synthesis models of evolving star-clusters, to constrain the initial-mass-functions (IMFs) in these objects. I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1 and 3 M_sun. I compare the inferred IMFs with the mass functions (MFs) of Galactic globular clusters. It appears that 1569A has a sufficient reservoir of low-mass stars for it to plausibly evolve into an object similar to Galactic globular clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make it difficult for this SSC to become a globular cluster. If low-mass stars do dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]

    Globular Cluster Formation in M82

    Full text link
    We present high resolution mid-infrared (mid-IR; 11.7 and 17.65 micron) maps of the central 400 pc region of the starburst galaxy M82. Seven star forming clusters are identified which together provide ~ 15% of the total mid-IR luminosity of the galaxy. Combining the mid-IR data with thermal radio measurements and near- and mid-IR line emission, we find that these young stellar clusters have inferred masses and sizes comparable to globular clusters. At least 20% of the star formation in M82 is found to occur in super-star clusters.Comment: 12 pages including three color figures; accepted for publication in Ap

    Hierarchical Structure Formation and Chemical Evolution of Galaxies

    Get PDF
    We present an analytical and phenomenological model for metal enrichment in halos based on hierarchical structure formation. This model assumes that astration of normal stellar populations along with SNe II already occurs at very high redshift. For halos that are not disrupted by SN II explosions, the chemical evolution of the gas and stars is explicitly determined by the rate of gas infall as compared with the astration rate and the corresponding rate of metal production by SNe II per H atom in the gas. This model provides a good description of the data on [Fe/H] for damped Ly alpha systems over a wide range of redshift 0.5 < z < 5. For all halos not disrupted by SN II explosions, if there is a cessation of gas infall, the metallicities of stars follow a bimodal distribution. This distribution is characterized by a sharp peak at the value of [Fe/H] corresponding to the time of infall cessation and by a broad peak at a higher value of [Fe/H] corresponding to the subsequent period of astration during which the bulk of the remaining gas forms stars. Such a distribution may be compared to that observed for the Galactic halo stars. If the gas in a halo is rapidly lost upon cessation of infall, then an assemblage of stars with a very sharply-defined [Fe/H] value will be left behind. This assemblage of stars may be accreted by a larger system and become a globular cluster of the larger system. We also discuss the masses and metallicities of the globular clusters in this model. (Abridged)Comment: 24 pages, 10 figures, to appear in Ap

    A Low-Mass Central Black Hole in the Bulgeless Seyfert 1 Galaxy NGC 4395

    Full text link
    NGC 4395 is one of the least luminous and nearest known type 1 Seyfert galaxies, and it also lacks a bulge. We present an HST I-band image of its nuclear region and Keck high-resolution (8 km/s) echelle spectra containing the Ca II near-infrared triplet. In addition to the unresolved point source, there is a nuclear star cluster of size r ~ 3.9 pc; the upper limit on its velocity dispersion is only 30 km/s. We thus derive an upper limit of 6.2x10^6 solar masses for the mass of the compact nucleus. Based on the amount of spatially resolved light in the HST image, a sizable fraction of this is likely to reside in stars. Hence, this estimate sets a stringent upper limit on the mass of the central black hole. We argue, from other lines of evidence, that the true mass of the black hole is likely to be 10^4-10^5 solar masses. Although the black hole is much less massive than those thought to exist in classical active galactic nuclei, its accretion rate of L_bol/L_Edd ~ 2x10^-2 to 2x10^-3 is consistent with the mass-luminosity relation obeyed by classical AGNs. This may explain why NGC 4395 has a high-excitation (Seyfert) emission-line spectrum; active galaxies having low-ionization spectra seem to accrete at significantly lower rates. NGC 4395, a pure disk galaxy, demonstrates that supermassive black holes are not associated exclusively with bulges.Comment: To appear in ApJ (Letters). 5 page

    Massive perturbers and the efficient merger of binary massive black holes

    Full text link
    We show that dynamical relaxation in the aftermath of a galactic merger and the ensuing formation and decay of a binary massive black hole (MBH), are dominated by massive perturbers (MPs) such as giant molecular clouds or clusters. MPs accelerate relaxation by orders of magnitude relative to 2-body stellar relaxation alone, and efficiently scatter stars into the binary MBH's orbit. The 3-body star-binary MBH interactions shrink the binary MBH to the point where energy losses from the emission of gravitational waves (GW) lead to rapid coalescence. We model this process based on observed and simulated MP distributions and take into account the decreased efficiency of the star-binary MBH interaction due to acceleration in the galactic potential. We show that mergers of gas-rich galactic nuclei lead to binary MBH coalescence well within the Hubble time. Moreover, lower-mass binary MBHs (<10^8 Msun) require only a few percent of the typical gas mass in a post-merger nucleus to coalesce in a Hubble time. The fate of a binary MBH in a gas poor galactic merger is less certain, although massive stellar structures (e.g. clusters, stellar rings) could likewise lead to efficient coalescence. These coalescence events are observable by their strong GW emission. MPs thus increase the cosmic rate of such GW events, lead to a higher mass deficit in the merged galactic core and suppress the formation of triple MBH systems and the resulting ejection of MBHs into intergalactic space.Comment: 14 pages, 4 figures, 3 tables. More detailed explanations and changes in structure. Section on hypervelocity stars moved to another paper (in preparation). Results and conclusions unchanged. Accepted to Ap

    Binding Energy and the Fundamental Plane of Globular Clusters

    Full text link
    A physical description of the fundamental plane of Galactic globular clusters is developed which explains all empirical trends and correlations in a large number of cluster observables and provides a small but complete set of truly independent constraints on theories of cluster formation and evolution in the Milky Way. Within the theoretical framework of single-mass, isotropic King models, it is shown that (1) 39 regular (non--core-collapsed) globulars with measured core velocity dispersions share a common V-band mass-to-light ratio of 1.45 +/- 0.10, and (2) a complete sample of 109 regular globulars reveals a very strong correlation between cluster binding energy and total luminosity, regulated by Galactocentric position: E_b \propto (L^{2.05} r_{\rm gc}^{-0.4}). The observational scatter about either of these two constraints can be attributed fully to random measurement errors, making them the defining equations of a fundamental plane for globular clusters. A third, weaker correlation, between total luminosity and the King-model concentration parameter, c, is then related to the (non-random) distribution of globulars on the plane. The equations of the FP are used to derive expressions for any cluster observable in terms of only L, r_{\rm gc}, and c. Results are obtained for generic King models and applied specifically to the globular cluster system of the Milky Way.Comment: 60 pages with 19 figures, submitted to Ap

    HAT-P-4b: A metal-rich low-density transiting hot Jupiter

    Get PDF
    We describe the discovery of HAT-P-4b, a low-density extrasolar planet transiting BD+36 2593, a V = 11.2 mag slightly evolved metal-rich late F star. The planet's orbital period is 3.056536+/-0.000057 d with a mid-transit epoch of 2,454,245.8154 +/- 0.0003 (HJD). Based on high-precision photometric and spectroscopic data, and by using transit light curve modeling, spectrum analysis and evolutionary models, we derive the following planet parameters: Mp= 0.68 +/- 0.04 MJ, Rp= 1.27 +/- 0.05 RJ, rho = 0.41 +/- 0.06 g cm-3 and a = 0.0446 +/- 0.0012 AU. Because of its relatively large radius, together with its assumed high metallicity of that of its parent star, this planet adds to the theoretical challenges to explain inflated extrasolar planets.Comment: 5 pages, accepted for publication in ApJ

    K-band Spectroscopy of Clusters in NGC 4038/4039

    Full text link
    Integral field spectroscopy in the K-band (1.9-2.4um) was performed on four IR-bright star clusters and the two nuclei in NGC 4038/4039 (``The Antennae''). Two of the clusters are located in the overlap region of the two galaxies, and together comprise ~25% of the total 15um and ~10% of the total 4.8 GHz emission from this pair of merging galaxies. The other two clusters, each of them spatially resolved into two components, are located in the northern galaxy, one in the western and one in the eastern loop of blue clusters. Comparing our analysis of Brgamma, CO band-heads, He I (2.058um), Halpha (from archival HST data), and V-K colors with stellar population synthesis models indicates that the clusters are extincted (A_V ~ 0.7 - 4.3 mags) and young, displaying a significant age spread (4-13 Myrs). The starbursts in the nuclei are much older (65 Myrs), with the nucleus of NGC 4038 displaying a region of recent star formation northward of its K-band peak. Using our derived age estimates and assuming the parameters of the IMF (Salpeter slope, upper mass cut-off of 100 M_sun, Miller-Scalo between 1 M_sun and 0.1 M_sun), we find that the clusters have masses between 0.5 and 5 * 10^6M_sun.Comment: 10 pages, 3 figures, ApJ accepte

    A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4

    Get PDF
    We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H] =−0.19±0.08= -0.19\pm 0.08, Teff=5650±75T_\mathrm{eff} = 5650\pm 75 K, and log⁥g=4.4±0.1\log g = 4.4\pm 0.1 for TrES-3, and [Fe/H] =+0.14±0.09= +0.14\pm 0.09, Teff=6200±75T_\mathrm{eff} = 6200\pm 75 K, and log⁥g=4.0±0.1\log g = 4.0\pm0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial-velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. We have redetermined the stellar parameters taking advantage of the strong constraint provided by the light curves in the form of the normalized separation a/R⋆a/R_\star (related to the stellar density) in conjunction with our new temperatures and metallicities. The masses and radii we derive are M_\star=0.928_{-0.048}^{+0.028} M_{\sun},R_\star = 0.829_{-0.022}^{+0.015} R_{\sun}, and M_\star = 1.404_{-0.134}^{+0.066} M_{\sun}, R_\star=1.846_{-0.087}^{+0.096} R_{\sun} for TrES-3 and TrES-4, respectively. With these revised stellar parameters we obtain improved values for the planetary masses and radii. We find Mp=1.910−0.080+0.075MJupM_p = 1.910_{-0.080}^{+0.075} M_\mathrm{Jup}, Rp=1.336−0.036+0.031RJupR_p=1.336_{-0.036}^{+0.031} R_\mathrm{Jup} for TrES-3, and Mp=0.925±0.082MJupM_p=0.925 \pm 0.082 M_\mathrm{Jup}, Rp=1.783−0.086+0.093RJupR_p=1.783_{-0.086}^{+0.093} R_\mathrm{Jup} for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters.Comment: 42 pages, 10 tables, 8 figures. Accepted for publication in the Astrophysical Journa
    • 

    corecore