15 research outputs found

    Assessing the impact of community-based interventions on hypertension and diabetes management in three Minnesota communities: Findings from the prospective evaluation of US HealthRise programs

    Get PDF
    Background Community-based health interventions are increasingly viewed as models of care that can bridge healthcare gaps experienced by underserved communities in the United States (US). With this study, we sought to assess the impact of such interventions, as implemented through the US HealthRise program, on hypertension and diabetes among underserved communities in Hennepin, Ramsey, and Rice Counties, Minnesota. Methods and findings HealthRise patient data from June 2016 to October 2018 were assessed relative to comparison patients in a difference-in-difference analysis, quantifying program impact on reducing systolic blood pressure (SBP) and hemoglobin A1c, as well as meeting clinical targets (< 140 mmHg for hypertension, < 8% Al1c for diabetes), beyond routine care. For hypertension, HealthRise participation was associated with SBP reductions in Rice (6.9 mmHg [95% confidence interval: 0.9–12.9]) and higher clinical target achievement in Hennepin (27.3 percentage-points [9.8–44.9]) and Rice (17.1 percentage-points [0.9 to 33.3]). For diabetes, HealthRise was associated with A1c decreases in Ramsey (1.3 [0.4–2.2]). Qualitative data showed the value of home visits alongside clinic-based services; however, challenges remained, including community health worker retention and program sustainability. Conclusions HealthRise participation had positive effects on improving hypertension and diabetes outcomes at some sites. While community-based health programs can help bridge healthcare gaps, they alone cannot fully address structural inequalities experienced by many underserved communities

    Procedure for Organic Matter Removal from Peat Samples for XRD Mineral Analysis

    No full text
    Ombrotrophic peatlands are recognized archives of past atmospheric mineral dust deposition. Net dust deposition rates, grain size, mineral hosts and source areas are typically inferred from down-core elemental data. Although elemental analysis can be time efficient and data rich, there are some inherent limitations. X-ray diffraction (XRD) analysis allowsdirect identification of mineral phases in environmental samples but few studies have applied this method to peat samples and a well-developed protocol for extracting the inorganic fraction of highly organic samples (&gt;95%) is lacking. We tested and compared different levels of pre-treatment: no pre-treatment, thermal combustion (300, 350, 400, 450, 500 and 550 degrees C) and chemical oxidation (H2O2 and Na2S2O8) using a homogenised highly organic (&gt;98%) composite peat sample. Subsequently, minerals were identified by XRD. The results show that combustion is preferred to chemical oxidation because it most efficiently removes organic matter (OM), an important pre-requisite for identifying mineral phases by XRD analysis. Thermally induced phase transitions can be anticipated when temperature is the only factor to take into consideration. Based on the data required in this studythe recommended combustion temperature is 500 degrees C which efficiently removes OM while preserving a majority of common dust minerals

    Methods for Characterization of Inorganic and Mineral Matter in Coal:  A Critical Overview

    No full text
    corecore