2 research outputs found

    Combining deep learning and 3D contrast source inversion in MR-based electrical properties tomography

    No full text
    Magnetic resonance electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available; however, all these methods present several limitations, which hamper the clinical applicability. Standard Helmholtz-based MR-EPT methods are severely affected by noise. Iterative reconstruction methods such as contrast source inversion electrical properties tomography (CSI-EPT) are typically time-consuming and are dependent on their initialization. Deep learning (DL) based methods require a large amount of training data before sufficient generalization can be achieved. Here, we investigate the benefits achievable using a hybrid approach, that is, using MR-EPT or DL-EPT as initialization guesses for standard 3D CSI-EPT. Using realistic electromagnetic simulations at 3 and 7 T, the accuracy and precision of hybrid CSI reconstructions are compared with those of standard 3D CSI-EPT reconstructions. Our results indicate that a hybrid method consisting of an initial DL-EPT reconstruction followed by a 3D CSI-EPT reconstruction would be beneficial. DL-EPT combined with standard 3D CSI-EPT exploits the power of data-driven DL-based EPT reconstructions, while the subsequent CSI-EPT facilitates a better generalization by providing data consistency.Circuits and System

    First-Order Induced Current Density Imaging and Electrical Properties Tomography in MRI

    No full text
    In this paper, we present an efficient dedicated electrical properties tomography (EPT) algorithm (called first-order current density EPT ) that exploits the particular radio frequency field structure, which is present in the midplane of a birdcage coil, to reconstruct conductivity and permittivity maps in this plane from B ^ + 1 data. The algorithm consists of a current density and an electrical properties step. In the current density reconstruction step, the induced currents in the midplane are determined by acting with a specific first-order differentiation operator on the B ^ + 1 data. In the electrical properties step, we first determine the electric field strength by solving a particular integral equation, and subsequently determine conductivity and permittivity maps from the constitutive relations. The performance of the algorithm is illustrated by presenting reconstructions of a human brain model based on simulated (noise corrupted) data and of a known phantom model based on experimental data. The method manages to reconstruct conductivity profiles without model related boundary artifacts and is also more robust to noise because only first-order differencing of the data is required as opposed to second-order data differencing in Helmholtz-based approaches. Moreover, reconstructions can be performed in less than a second, allowing for essentially real-time electrical properties mapping.Accepted author manuscriptCircuits and System
    corecore