3,317 research outputs found

    Analysis of delamination in unidirectional and crossplied fiber composites containing surface cracks

    Get PDF
    A two-dimensional hybrid stress finite element analysis is described which was used to study the local stress field around delamination cracks in composite materials. The analysis employs a crack tip singularity element which is embedded in a matrix interlayer between plies of the laminate. Results are given for a unidirectional graphite/epoxy laminate containing a delamination emanating from a surface crack through the outside ply. The results illustrate several aspects of delamination cracks: (1) the localization of the singular stress domain within the interlayer; (2) the local concentration of stress in the ply adjacent to the crack; (3) the nature of the transverse normal and interlaminar shear stress distributions; and (4) the relative magnitudes of K sub 1 and K sub 2 associated with the delamination. A simple example of the use of the analysis in predicting delamination crack growth is demonstrated for a glass/epoxy laminate. The comparisons with experimental data show good agreement

    Understanding and Addressing the Impact of Autism on the Family

    Get PDF
    Children and adults with autism spectrum disorders (ASDs) have needs that challenge our systems of care. A new study estimates ASDs cost more than $126 billion each year in the U.S. – an amount that reflects both the costs of providing educational and medical services as well as the costs of not intervening early and effectively enough to prevent lifelong disability. This Issue Brief summarizes the implications of childhood autism for parental employment and earnings, and analyzes whether community-based services can reduce costly, psychiatric hospitalizations of children with ASDs

    Surface crack growth in fiber composites

    Get PDF
    The results of an experimental study of damage extension and failure in glass and graphite/epoxy laminates containing partially through-thickness surface cracks are presented. The laminates studied are divided between those containing four plies, 90/0/0/90, 15/-15/-15/15, and 45/-45/-45/45, and those containing 12-16 plies of the general configurations 0/90, + or - 45, and 0/+ or - 60. Most of the results are for surface cracks of various lengths and several depths. Stable damage extension in laminates containing surface cracks is predominantly delamination between plies, and tends to be much more extensive prior to failure than is the case with through-thickness cracks, resulting in approximately notch-insensitive behavior in most cases. A greater tendency for notch-sensitive behavior is found for 0/90 graphite/epoxy laminates for which stable damage extension is more limited. The rate of damage extension with increasing applied stress depends upon the composite system and ply configuration as well as the crack length and depth. An approximate semiempirical method is presented for estimating the growth rate of large damage-regions

    High temperature condensate clouds in super-hot Jupiter atmospheres

    Full text link
    Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.Comment: Accepted for publication in MNRAS, 10 pages, 1 table, 5 figure

    Toughening of thermosetting polyimides

    Get PDF
    Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30

    Azumaya Objects in Triangulated Bicategories

    Full text link
    We introduce the notion of Azumaya object in general homotopy-theoretic settings. We give a self-contained account of Azumaya objects and Brauer groups in bicategorical contexts, generalizing the Brauer group of a commutative ring. We go on to describe triangulated bicategories and prove a characterization theorem for Azumaya objects therein. This theory applies to give a homotopical Brauer group for derived categories of rings and ring spectra. We show that the homotopical Brauer group of an Eilenberg-Mac Lane spectrum is isomorphic to the homotopical Brauer group of its underlying commutative ring. We also discuss tilting theory as an application of invertibility in triangulated bicategories.Comment: 23 pages; final version; to appear in Journal of Homotopy and Related Structure

    Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b

    Get PDF
    We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (Teq=2411K_{eq}=2411K, M=10.3MJM=10.3M_{J}) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4μ\mum. However, we infer emission at 4.5μ\mum and absorption at 1.6μ\mum that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity (C/H=283−138+395×283^{+395}_{-138}\times solar). The derived composition and T/P profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at >2σ>2\sigma. Future observations are necessary to confirm the unusual planetary properties implied by these results
    • …
    corecore