45 research outputs found
Methylation Analyses Reveal Promoter Hypermethylation as a Rare Cause of “Second Hit” in Germline BRCA1-Associated Pancreatic Ductal Adenocarcinoma
Background and objectivePancreatic ductal adenocarcinoma (PDAC) is characterized by the occurrence of pathogenic variants in BRCA1/2 in 5-6% of patients. Biallelic loss of BRCA1/2 enriches for response to platinum agents and poly (ADP-ribose) polymerase 1 inhibitors. There is a dearth of evidence on the mechanism of inactivation of the wild-type BRCA1 allele in PDAC tumors with a germline BRCA1 (gBRCA1) pathogenic or likely pathogenic variant (P/LPV). Herein, we examine promotor hypermethylation as a "second hit" mechanism in patients with gBRCA1-PDAC.MethodsWe evaluated patients with PDAC who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) somatic and germline testing from an institutional database. DNA isolated from tumor tissue and matched normal peripheral blood were sequenced by MSK-IMPACT. In patients with gBRCA1-PDAC, we examined the somatic BRCA1 mutation status and promotor methylation status of the tumor BRCA1 allele via a methylation array analysis. In patients with sufficient remaining DNA, a second methylation analysis by pyrosequencing was performed.ResultsOf 1012 patients with PDAC, 19 (1.9%) were identified to harbor a gBRCA1 P/LPV. Fifteen patients underwent a methylation array and the mean percentage of BRCA1 promotor methylation was 3.62%. In seven patients in whom sufficient DNA was available, subsequent pyrosequencing confirmed an unmethylated BRCA1 promotor. Loss of heterozygosity was detected in 12 of 19 (63%, 95% confidence interval 38-84) patients, demonstrating loss of heterozygosity is the major molecular mechanism of BRCA1 inactivation in PDAC. Two (10.5%) cases had a somatic BRCA1 mutation.ConclusionsIn patients with gBRCA1-P/LPV-PDAC, loss of heterozygosity is the main inactivating mechanism of the wild-type BRCA1 allele in the tumor, and methylation of the BRCA1 promoter is a distinctly uncommon occurrence
Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma
<p>Abstract</p> <p>Background</p> <p>The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression.</p> <p>Methods</p> <p>To determine the underlying mechanisms for the heterogeneous UCHL1 expression pattern in RCC the UCHL1 promoter DNA methylation status was determined in 17 RCC cell lines as well as in 32 RCC lesions and corresponding tumor adjacent kidney epithelium using combined bisulfite restriction analysis as well as bisulfite DNA sequencing.</p> <p>Results</p> <p>UCHL1 expression was found in all 32 tumor adjacent kidney epithelium samples. However, the lack of or reduced UCHL1 mRNA and/or protein expression was detected in 13/32 RCC biopsies and 7/17 RCC cell lines and due to either a total or partial methylation of the UCHL1 promoter DNA. Upon 2'-deoxy-5-azacytidine treatment an induction of UCHL1 mRNA and protein expression was found in 9/17 RCC cell lines, which was linked to the demethylation degree of the UCHL1 promoter DNA.</p> <p>Conclusion</p> <p>Promoter hypermethylation represents a mechanism for the silencing of the UCHL1 gene expression in RCC and supports the concept of an epigenetic control for the expression of UCHL1 during disease progression.</p
Recommended from our members
Cancer therapy shapes the fitness landscape of clonal hematopoiesis.
Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies
Cancer therapy shapes the fitness landscape of clonal hematopoiesis.
Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies
Universal germline genetic testing in patients with hematologic malignancies using DNA isolated from nail clippings
Not available
Cell-free DNA from nail clippings as source of normal control for genomic studies in hematologic malignancies
Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patient management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs. In contrast to solid tumors, conventional sources of normal control (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we find nail cfDNA is a robust source of germline control for paired genomic studies. In a subset of patients, nail DNA may have tumor DNA contamination, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1482) compared to lymphoid diseases (5.4%; 61/1128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. For nails collected after allogeneic stem-cell transplantation, donor DNA was identified in 22% (11/50). In this cohort, an association with recent history of graft-vs-host disease was identified. These findings should be considered as a potential limitation for the use of nail as normal control but could also provide important diagnostic information regarding the disease process
Precision medicine in non-small cell lung cancer: Current applications and future directions
Advances in biomarkers, targeted therapies, and immuno-oncology have transformed the clinical management of patients with advanced NSCLC. For oncogene-driven tumors, there are highly effective targeted therapies against EGFR, ALK, ROS1, BRAF, TRK, RET, and MET. In addition, investigational therapies for KRAS, NRG1, and HER2 have shown promising results and may become standard-of-care in the near future. In parallel, immune -checkpoint therapy has emerged as an indispensable treatment modality, especially for patients lacking actionable oncogenic drivers. While PD-L1 expression has shown modest predictive utility, biomarkers for immune-checkpoint inhibition in NSCLC have remained elusive and represent an area of active investigation. Given the growing importance of biomarkers, optimal utilization of small tissue biopsies and alternative geno-typing methods using circulating cell-free DNA have become increasingly integrated into clinical practice. In this review, we will summarize the current landscape and emerging trends in precision medicine for patients with advanced NSCLC with a special focus on predictive biomarker testing
Recommended from our members
Refractory myeloid sarcoma with a FIP1L1-PDGFRA rearrangement detected by clinical high throughput somatic sequencing
Next generation sequencing (NGS) is increasingly being used clinically to characterize the molecular alterations found in patients’ tumors. These testing results have the potential to affect clinical care by guiding therapeutic approaches based upon genotype. NGS based testing approaches have a distinct advantage over provider-ordered single gene testing in that they can detect unexpected, yet clinically important genetic changes. Here, we illustrate this principle with the case of a 33-year-old man with myeloid sarcoma that was refractory to six different chemotherapeutic regimens. Our clinical NGS assay detected an unanticipated FIP1L1-PDGFRA rearrangement in his tumor. The patient was immediately placed on Imatinib therapy to which he responded, and remains in remission 10 months after the rearrangement was initially detected