4,257 research outputs found
Generation of Total Angular Momentum Eigenstates in Remote Qubits
We propose a scheme enabling the universal coupling of angular momentum of
remote noninteracting qubits using linear optical tools only. Our system
consists of single-photon emitters in a -configuration that are
entangled among their long-lived ground-state qubits through suitably designed
measurements of the emitted photons. In this manner, we present an
experimentally feasible algorithm that is able to generate any of the
symmetric and nonsymmetric total angular momentum eigenstates spanning the
Hilbert space of the -qubit compound.Comment: 5 pages, 4 figures, improved presentation. Accepted in Physical
Review
Correlated photon pairs generated from a warm atomic ensemble
We present measurements of the cross-correlation function of photon pairs at
780 nm and 1367 nm, generated in a hot rubidium vapor cell. The temporal
character of the biphoton is determined by the dispersive properties of the
medium where the pair generation takes place. We show that short correlation
times occur for optically thick samples, which can be understood in terms of
off-resonant pair generation. By modifying the linear response of the sample,
we produce near-resonant photon pairs, which could in principle be used for
entanglement distribution
Generation of Symmetric Dicke States of Remote Qubits with Linear Optics
We propose a method for generating all symmetric Dicke states, either in the
long-lived internal levels of N massive particles or in the polarization
degrees of freedom of photonic qubits, using linear optical tools only. By
means of a suitable multiphoton detection technique, erasing Welcher-Weg
information, our proposed scheme allows the generation and measurement of an
important class of entangled multiqubit states.Comment: New version, a few modifications and a new figure, accepted in
Physical Review Letter
Phase correlation of laser waves with arbitrary frequency spacing
The theoretically predicted correlation of laser phase fluctuations in
Lambda-type interaction schemes is experimentally demonstrated. We show, that
the mechanism of correlation in a Lambda scheme is restricted to high frequency
noise components, whereas in a double- scheme, due to the laser phase
locking in closed-loop interaction, it extends to all noise frequencies. In
this case the correlation is weakly sensitive to coherence losses. Thus the
double-Lambda scheme can be used to correlate e.m. fields with carrier
frequency differences beyond the GHz regime.Comment: 4 pages, 4 figure
Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers
We present a theoretical and experimental investigation of the emission
characteristics and the flux of photon pairs generated by spontaneous
parametric downconversion in quasi-phase matched bulk crystals for the use in
quantum communication sources. We show that, by careful design, one can attain
well defined modes close to the fundamental mode of optical fibers and obtain
high coupling efficiencies also for bulk crystals, these being more easily
aligned than crystal waveguides. We distinguish between singles coupling,
conditional coincidence, and pair coupling, and show how each of these
parameters can be maximized by varying the focusing of the pump mode and the
fiber-matched modes using standard optical elements. Specifically we analyze a
periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs
at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies
above 94% at optimal focusing, which is found by the geometrical relation L/z_R
to be ~ 1 to 2 for the pump mode and ~ 2 to 3 for the fiber-modes, where L is
the crystal length and z_R is the Rayleigh-range of the mode-profile. These
results are independent on L. By showing that the single-mode bandwidth
decreases as 1/L, we can therefore design the source to produce and couple
narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means
both less chromatic dispersion for long propagation distances in fibers, and
that telecom Bragg gratings can be utilized to compensate for broadened photon
packets--a vital problem for time-multiplexed qubits. Longer crystals also
yield an increase in fiber photon flux proportional to sqrt{L}, and so,
assuming correct focusing, we can only see advantages using long crystals.Comment: 19 pages, 15 figures, ReVTeX4, minor revisio
Double Compact Objects III: Gravitational Wave Detection Rates
The unprecedented range of second-generation gravitational-wave (GW)
observatories calls for refining the predictions of potential sources and
detection rates. The coalescence of double compact objects (DCOs)---i.e.,
neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black
hole-black hole (BH-BH) binary systems---is the most promising source of GWs
for these detectors. We compute detection rates of coalescing DCOs in
second-generation GW detectors using the latest models for their cosmological
evolution, and implementing inspiral-merger-ringdown (IMR) gravitational
waveform models in our signal-to-noise ratio calculations. We find that: (1)
the inclusion of the merger/ringdown portion of the signal does not
significantly affect rates for NS-NS and BH-NS systems, but it boosts rates by
a factor for BH-BH systems; (2) in almost all of our models BH-BH
systems yield by far the largest rates, followed by NS-NS and BH-NS systems,
respectively, and (3) a majority of the detectable BH-BH systems were formed in
the early Universe in low-metallicity environments. We make predictions for the
distributions of detected binaries and discuss what the first GW detections
will teach us about the astrophysics underlying binary formation and evolution.Comment: published in ApJ, 19 pages, 11 figure
Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions
A method for gaining information about the phonon-number moments and the
generalized nonlinear and linear quadratures in the motion of trapped ions (in
particular, position and momentum) is proposed, valid inside and outside the
Lamb-Dicke regime. It is based on the measurement of first time derivatives of
electronic populations, evaluated at the motion-probe interaction time t=0. In
contrast to other state-reconstruction proposals, based on measuring Rabi
oscillations or dispersive interactions, the present scheme can be performed
resonantly at infinitesimal short motion-probe interaction times, remaining
thus insensitive to decoherence processes.Comment: 10 pages. Accepted in JPhys
Nonclassicality of Thermal Radiation
It is demonstrated that thermal radiation of small occupation number is
strongly nonclassical. This includes most forms of naturally occurring
radiation. Nonclassicality can be observed as a negative weak value of a
positive observable. It is related to negative values of the Margenau-Hill
quasi-probability distribution.Comment: 3 pages, 3 figure
Inequalities for electron-field correlation functions
I show that there exists a class of inequalities between correlation
functions of different orders of a chaotic electron field. These inequalities
lead to the antibunching effect and are a consequence of the fact that
electrons are fermions -- indistinguishable particles with antisymmetric
states. The derivation of the inequalities is based on the known form of the
correlation functions for the chaotic state and on the properties of matrices
and determinants.Comment: 8 pages Latex2e, 2 eps figure
Continuous photodetection model: quantum jump engineering and hints for experimental verification
We examine some aspects of the continuous photodetection model for
photocounting processes in cavities. First, we work out a microscopic model
that describes the field-detector interaction and deduce a general expression
for the Quantum Jump Superoperator (QJS), that shapes the detector's
post-action on the field upon a detection. We show that in particular cases our
model recovers the QJSs previously proposed ad hoc in the literature and point
out that by adjusting the detector parameters one can engineer QJSs. Then we
set up schemes for experimental verification of the model. By taking into
account the ubiquitous non-idealities, we show that by measuring the lower
photocounts moments and the mean waiting time one can check which QJS better
describes the photocounting phenomenon.Comment: 12 pages, 7 figures. Contribution to the conference Quantum Optics
III, Pucon - Chile, November 27-30, 200
- …