10,490 research outputs found
Distinguishing Posed and Spontaneous Smiles by Facial Dynamics
Smile is one of the key elements in identifying emotions and present state of
mind of an individual. In this work, we propose a cluster of approaches to
classify posed and spontaneous smiles using deep convolutional neural network
(CNN) face features, local phase quantization (LPQ), dense optical flow and
histogram of gradient (HOG). Eulerian Video Magnification (EVM) is used for
micro-expression smile amplification along with three normalization procedures
for distinguishing posed and spontaneous smiles. Although the deep CNN face
model is trained with large number of face images, HOG features outperforms
this model for overall face smile classification task. Using EVM to amplify
micro-expressions did not have a significant impact on classification accuracy,
while the normalizing facial features improved classification accuracy. Unlike
many manual or semi-automatic methodologies, our approach aims to automatically
classify all smiles into either `spontaneous' or `posed' categories, by using
support vector machines (SVM). Experimental results on large UvA-NEMO smile
database show promising results as compared to other relevant methods.Comment: 16 pages, 8 figures, ACCV 2016, Second Workshop on Spontaneous Facial
Behavior Analysi
Modified HLLC-VOF solver for incompressible two-phase fluid flows
A modified HLLC-type contact preserving Riemann solver for incompressible
two-phase flows using the artificial compressibility formulation is presented.
Here, the density is omitted from the pressure evolution equation. Also, while
calculating the eigenvalues and eigenvectors, the variations of the volume
fraction is taken into account. Hence, the equations for the intermediate
states and the intermediate wave speed are different from the previous HLLC-VOF
formulation [Bhat S P and Mandal J C, J. Comput. Phys. 379 (2019), pp.
173-191]. Additionally, an interface compression algorithm is used in tandem to
ensure sharp interfaces. The modified Riemann solver is found to be robust
compared to the previous HLLC-VOF solver, and the results produced are superior
compared to non-contact preserving solver. Several test problems in two- and
three-dimensions are solved to evaluate the efficacy of the solver on
structured and unstructured meshes
Spin analog of the controlled Josephson charge current
We propose a controlled Josephson spin current across the junction of two
non-centrosymmetric superconductors like CePt_3Si. The Josephson spin current
arises due to direction dependent tunneling matrix element and different
momentum dependent phases of the triplet components of the gap function. Its
modulation with the angle \xi between the noncentrosymmetric axes of two
superconductors is proportional to \sin \xi. This particular dependence on \xi
may find application of the proposed set-up in making a Josephson spin switch.Comment: 4 pages, 1 figure; title is changed; article is rewritte
Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses
Spatial correlations of microscopic fluctuations are investigated via
real-space experiments and computer simulations of colloidal glasses under
steady shear. It is shown that while the distribution of one-particle
fluctuations is always isotropic regardless of the relative importance of shear
as compared to thermal fluctuations, their spatial correlations show a marked
sensitivity to the competition between shear-induced and thermally activated
relaxation. Correlations are isotropic in the thermally dominated regime, but
develop strong anisotropy as shear dominates the dynamics of microscopic
fluctuations. We discuss the relevance of this observation for a better
understanding of flow heterogeneity in sheared amorphous solids.Comment: 6 pages, 4 figure
Recommended from our members
Role of the Secondary Phase η During High-Temperature Compression of ATI 718Plus®
Abstract
High-temperature compression tests were performed on a Ni-base superalloy with a multi-phase microstructure. Particular attention was given on the influence of the η phase on recrystallization of ATI 718Plus®. The compression tests were performed at two temperatures over a variety of strains and strain rates. Meta-dynamic recrystallization was studied by exposing the samples to a set dwell time at the test temperature after deformation. Electron backscatter diffraction (EBSD) was used to investigate the microstructures after the tests. Secondary electron imaging (SEI) and scanning transmission electron microscopy (STEM) were utilized in order to investigate the deformation behavior of η and obtaining a detailed understanding of the recrystallization mechanism. The secondary η phase was found to increase the recrystallized fraction compared to η free tests. However, clusters of thin lamellar η inhibited recrystallization. The flow curve softening was distinctly stronger in the microstructure containing precipitates. It could be shown by SE images that this was due to the breakage and realignment of η. In addition, η was also found to accommodate the stresses by a remarkable deformation without breaking up. This was considered to be due to the composite nature of the precipitate as well as the ongoing recrystallization in the surrounding matrix.</jats:p
Influence of different land-surface processes on Indian summer monsoon circulation
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes
- …