1,938 research outputs found

    Poly(hydroxamic acid) functionalized copper catalyzed C–N bond formation reactions

    Get PDF
    Highly active poly(hydroxamic acid) functionalized copper catalysts were synthesized by the surface modification of khaya cellulose through graft copolymerization and subsequent hydroximation processes. The prepared catalysts were well characterized by FTIR, FESEM, HRTEM, ICP-AES, UV-vis and XPS analyses. The supported catalysts effectively promoted C–N bond formation reactions and provided excellent yields of the corresponding products under mild reaction conditions. The catalysts were easy to recover from the reaction mixture and were reused several times without any significant loss of their catalytic activity

    Determination of bioavailable arsenic threshold and validation of modelled permissible total arsenic in paddy soil using machine learning

    Get PDF
    Minimizing arsenic intake from food consumption is a key aspect of the public health response in As-contaminated regions. In many of these regions, rice is the predominant staple food. Here we present a validated maximum allowable concentration of total As in paddy soil and provide the first derivation of a maximum allowable soil concentration for bioavailable As. We have previously used meta-analysis to predict the maximum allowable total As in soil based on decision tree (DT) and logistic regression (LR) models. The models were defined using the maximum tolerable concentration (MTC) of As in rice grains as per the codex recommendation. In the present study, we validated these models using three test data sets derived from purposely collected field data. The DT model performed better than the LR in terms of accuracy and Matthews correlation coefficient (MCC). Therefore, the DT estimated maximum allowable total As in paddy soil of 14 mg kgβˆ’1 could confidently be used as appropriate guideline value. We further used the purposely collected field data to predict the concentration of bioavailable As in the paddy soil with the help of random forest (RF), gradient boosting machine (GBM) and LR models. The category of grain As (MTC) was considered as the dependent variable; bioavailable As (BAs), total As (TAs), pH, organic carbon (OC), available phosphorus (AvP) and available iron (AvFe) were the predictor variables. LR performed better than RF and GBM in terms of accuracy, sensitivity, specificity, kappa, precision, log loss, F1score and MCC. From the better performing LR model, bioavailable As (BAs), TAs, AvFe and OC were significant variables for grain As. From the partial dependence plots (PDP) and individual conditional expectation (ICE) of the LR model, 5.70 mg kgβˆ’1 was estimated to be the limit for BAs in soil

    Malignant peripheral nerve sheath tumor of the breast: case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant peripheral nerve sheath tumor is a rare soft tissue sarcoma of ectomesenchymal origin. It is the malignant counterpart of benign soft tissue tumors like neurofibromas and schwannomas and may often follow them. Common sites include deeper soft tissues, usually in the proximity of a nerve trunk. Breast is an extremely rare location of this lesion and presentation as a breast lump in the absence of pain or previous benign neural tumor is even rarer.</p> <p>Case presentation</p> <p>A 38-year-old female presented with complaints of painless, hard breast lump for three months which was clinically suspected to be a ductal carcinoma with inconclusive fine needle aspiration cytology. Histopathology revealed a malignant spindle cell tumor which was confirmed to be malignant peripheral nerve sheath tumor on the basis of immunopositivity for vimentin, neurone specific enolase and S-100.</p> <p>Conclusion</p> <p>To the best of our knowledge only six such case reports have been published in literature. The differential diagnosis of malignant peripheral nerve sheath tumor should be considered by the clinician as well as the pathologists in the work-up of a breast neoplasm as treatment and prognosis of this rare malignancy is different.</p

    Deficits in Implicit Attention to Social Signals in Schizophrenia and High Risk Groups: Behavioural Evidence from a New Illusion

    Get PDF
    Background An increasing body of evidence suggests that the apparent social impairments observed in schizophrenia may arise from deficits in social cognitive processing capacities. The ability to process basic social cues, such as gaze direction and biological motion, effortlessly and implicitly is thought to be a prerequisite for establishing successful social interactions and for construing a sense of "social intuition." However, studies that address the ability to effortlessly process basic social cues in schizophrenia are lacking. Because social cognitive processing deficits may be part of the genetic vulnerability for schizophrenia, we also investigated two groups that have been shown to be at increased risk of developing schizophrenia-spectrum pathology: first-degree relatives of schizophrenia patients and men with Klinefelter syndrome (47,XXY). Results We compared 28 patients with schizophrenia, 29 siblings of patients with schizophrenia, and 29 individuals with Klinefelter syndrome with 46 matched healthy control subjects on a new paradigm. This paradigm measures one's susceptibility for a bias in distance estimation between two agents that is induced by the implicit processing of gaze direction and biological motion conveyed by these agents. Compared to control subjects, patients with schizophrenia, as well as siblings of patients and Klinefelter men, showed a lack of influence of social cues on their distance judgments. Conclusions We suggest that the insensitivity for social cues is a cognitive aspect of schizophrenia that may be seen as an endophenotype as it appears to be present both in relatives who are at increased genetic risk and in a genetic disorder at risk for schizophrenia-spectrum psychopathology. These social cue-processing deficits could contribute, in part, to the difficulties in higher order social cognitive tasks and, hence, to decreased social competence that has been observed in these groups

    Genomic Organization, Tissue Distribution and Functional Characterization of the Rat Pate Gene Cluster

    Get PDF
    The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20–60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions

    Tumor-Shed PGE2 Impairs IL2RΞ³c-Signaling to Inhibit CD4+ T Cell Survival: Regulation by Theaflavins

    Get PDF
    BACKGROUND:Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. METHODOLOGY/PRINCIPAL FINDINGS:By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor gammac (IL2Rgammac)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rgammac expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1 6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rgammac/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. CONCLUSIONS/SIGNIFICANCE:These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(Ξ³-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound.</p> <p>Methods</p> <p>5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres.</p> <p>Results</p> <p>5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t<sub>1/2</sub>, 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 ΞΌg/L vs. 17047.3 ΞΌg/L), and greater distribution volume (V<sub>D</sub>, 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05).</p> <p>Conclusion</p> <p>In our model system, 5-FU/PEG-PBLG nanoparticles changed the pharmacokinetic behavior of 5-FU, thus increasing its anticancer activity. 5-Fluorouracil loaded nanoparticles have potential as a novel anticancer drug that may have useful clinical applications.</p

    Regulation of Human Formyl Peptide Receptor 1 Synthesis: Role of Single Nucleotide Polymorphisms, Transcription Factors, and Inflammatory Mediators

    Get PDF
    The gene encoding the human formyl peptide receptor 1 (FPR1) is heterogeneous, containing numerous single nucleotide polymorphisms (SNPs). Here, we examine the effect of these SNPs on gene transcription and protein translation. We also identify gene promoter sequences and putative FPR1 transcription factors. To test the effect of codon bias and codon pair bias on FPR1 expression, four FPR1 genetic variants were expressed in human myeloid U937 cells fused to a reporter gene encoding firefly luciferase. No significant differences in luciferase activity were detected, suggesting that the translational regulation and protein stability of FPR1 are modulated by factors other than the SNP codon bias and the variant amino acid properties. Deletion and mutagenesis analysis of the FPR1 promoter showed that a CCAAT box is not required for gene transcription. A βˆ’88/41 promoter construct resulted in the strongest transcriptional activity, whereas a βˆ’72/41 construct showed large reduction in activity. The region between βˆ’88 and βˆ’72 contains a consensus binding site for the transcription factor PU.1. Mutagenesis of this site caused significant reduction in reporter gene expression. The PU.1 binding was confirmed in vivo by chromatin immunoprecipitation, and the binding to nucleotides βˆ’84 to βˆ’76 (TTCCTATTT) was confirmed in vitro by an electrophoretic mobility shift assay. Thus, similar to many other myeloid genes, FPR1 promoter activity requires PU.1. Two single nucleotide polymorphisms at βˆ’56 and βˆ’54 did not significantly affect FPR1 gene expression, despite differences in binding of transcription factor IRF1 in vitro. Inflammatory mediators such as interferon-Ξ³, tumor necrosis factor-Ξ±, and lipopolysaccharide did not increase FPR1 promoter activity in myeloid cells, whereas differentiation induced by DMSO and retinoic acid enhanced the activity. This implies that the expression of FPR1 in myeloid cells is developmentally regulated, and that the differentiated cells are equipped for immediate response to microbial infections
    • …
    corecore