15 research outputs found

    Tunable mechanical and thermal properties of ZnS/CdS core/shell nanowires

    Full text link
    Using all atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few atomic layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires

    Strain induced phase transition in CdSe nanowires: Effect of size and temperature

    No full text
    Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990

    Mechanical properties of ZnS nanowires and thin films: Microscopic origin of the dependence on size and growth direction

    No full text
    Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of [0001] nanowires has strong size dependence. On the other hand, [011̅0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the [0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the [0001] nanowire

    Engineering Gold Nanoparticle Interaction by PAMAM Dendrimer

    No full text
    Bare faceted gold nanoparticles (AuNPs) have a tendency to aggregate through a preferred attachment of the 111] surfaces. We have used fully atomistic classical molecular dynamics simulations to obtain a quantitative estimate of this surface interaction using umbrella sampling (US) at various temperatures. To tune this surface interaction, we use polyamidoamine (PAMAM) dendrimer to coat the gold surface under various conditions. We observe a spontaneous adsorption of the protonated as well as nonprotonated PAMAM dendrimer on the AuNP surface. The adsorbed dendrimer on the nanoparticle surface strongly alters the interaction between the nanoparticles. We calculate the interaction between dendrimercoated AuNPs using US and show how the interaction between two bare faceted AuNPs can be tuned as a function of dendrimer concentration and charge (pH dependent) With appropriate choice of the dendrimer concentration and charge, two strongly interacting AuNPs can be made effectively noninteracting. Our simulation results demonstrate a strategy to tune the nanoparticle interaction, which can help in engineering self-assembly of such nanoparticles

    Nature of the effective interaction between dendrimers

    No full text
    We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic C. Likos, M. Schmidt, H. Lowen, M. Ballauff, D. Potschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation I. Gotze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian. (C) 2014 AIP Publishing LLC

    DNA assisted self-assembly of PAMAM dendrimers

    No full text
    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391–397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer

    pH controlled gating of toxic protein pores by dendrimers

    No full text
    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl-counter ions to the P dendrimer creates a zone of high Cl-concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections

    Engineering Gold Nanoparticle Interaction by PAMAM Dendrimer

    No full text
    Bare faceted gold nanoparticles (AuNPs) have a tendency to aggregate through a preferred attachment of the [111] surfaces. We have used fully atomistic classical molecular dynamics simulations to obtain a quantitative estimate of this surface interaction using umbrella sampling (US) at various temperatures. To tune this surface interaction, we use polyamidoamine (PAMAM) dendrimer to coat the gold surface under various conditions. We observe a spontaneous adsorption of the protonated as well as nonprotonated PAMAM dendrimer on the AuNP surface. The adsorbed dendrimer on the nanoparticle surface strongly alters the interaction between the nanoparticles. We calculate the interaction between dendrimer-coated AuNPs using US and show how the interaction between two bare faceted AuNPs can be tuned as a function of dendrimer concentration and charge (pH-dependent). With appropriate choice of the dendrimer concentration and charge, two strongly interacting AuNPs can be made effectively noninteracting. Our simulation results demonstrate a strategy to tune the nanoparticle interaction, which can help in engineering self-assembly of such nanoparticles

    Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach

    No full text
    We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12–6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer–phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (<i>Soft Matter</i>, <b>2016</b>, <i>12</i>, 8246–8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer–drug complex
    corecore