2,357 research outputs found
Advances in High-Resolution Radiation Detection Using 4H-SiC Epitaxial Layer Devices
Advances towards achieving the goal of miniature 4H-SiC based radiation detectors for harsh environment application have been studied extensively and reviewed in this article. The miniaturized devices were developed at the University of South Carolina (UofSC) on 8 × 8 mm 4H-SiC epitaxial layer wafers with an active area of ≈11 mm2. The thicknesses of the actual epitaxial layers were either 20 or 50 µm. The article reviews the investigation of defect levels in 4H-SiC epilayers and radiation detection properties of Schottky barrier devices (SBDs) fabricated in our laboratories at UofSC. Our studies led to the development of miniature SBDs with superior quality radiation detectors with highest reported energy resolution for alpha particles. The primary findings of this article shed light on defect identification in 4H-SiC epilayers and their correlation with the radiation detection properties
A CdZnTeSe Gamma Spectrometer Trained by Deep Convolutional Neural Network for Radioisotope Identification
We report the implementation of a deep convolutional neural network to train a high-resolution room-temperature CdZnTeSe based gamma ray spectrometer for accurate and precise determination of gamma ray energies for radioisotope identification. The prototype learned spectrometer consists of a NI PCI 5122 fast digitizer connected to a pre-amplifier to recognize spectral features in a sequence of data. We used simulated preamplifier pulses that resemble actual data for various gamma photon energies to train a CNN on the equivalent of 90 seconds worth of data and validated it on 10 seconds worth of simulated data
- …