15 research outputs found

    RR Lyrae Variables in Two Fields in the Spheroid of M31

    Get PDF
    We present Hubble Space Telescope observations taken with the Advanced Camera for Surveys Wide Field Channel of two fields near M32—between 4 and 6 kpc from the center of M31. The data cover a time baseline sufficient for the identification and characterization of 681 RR Lyrae variables of which 555 are ab-type and 126 are c-type. The mean magnitude of these stars is = 25.29 ± 0.05, where the uncertainty combines both the random and systematic errors. The location of the stars in the Bailey diagram and the ratio of c-type RR Lyraes to all types are both closer to RR Lyraes in Oosterhoff type I globular clusters in the Milky Way as compared with Oosterhoff II clusters. The mean periods of the ab-type and c-type RR Lyraes are = 0.557 ± 0.003 and = 0.327 ± 0.003, respectively, where the uncertainties in each case represent the standard error of the mean. When the periods and amplitudes of the ab-type RR Lyraes in our sample are interpreted in terms of metallicity, we find the metallicity distribution function to be indistinguishable from a Gaussian with a peak at = –1.50 ± 0.02, where the quoted uncertainty is the standard error of the mean. Using a relation between RR Lyrae luminosity and metallicity along with a reddening of E(B – V) = 0.08 ± 0.03, we find a distance modulus of (m – M)_0 = 24.46 ± 0.11 for M31. We examine the radial metallicity gradient in the environs of M31 using published values for the bulge and halo of M31 as well as the abundances of its dwarf spheroidal companions and globular clusters. In this context, we conclude that the RR Lyraes in our two fields are more likely to be halo objects rather than associated with the bulge or disk of M31, in spite of the fact that they are located at 4-6 kpc in projected distance from the center

    Distances to Populous Clusters in the LMC via the K-Band Luminosity of the Red Clump

    Full text link
    We present results from a study of the distances and distribution of a sample of intermediate-age clusters in the Large Magellanic Cloud. Using deep near-infrared photometry obtained with ISPI on the CTIO 4m, we have measured the apparent K-band magnitude of the core helium burning red clump stars in 17 LMC clusters. We combine cluster ages and metallicities with the work of Grocholski & Sarajedini to predict each cluster's absolute K-band red clump magnitude, and thereby calculate absolute cluster distances. An analysis of these data shows that the cluster distribution is in good agreement with the thick, inclined disk geometry of the LMC, as defined by its field stars. We also find that the old globular clusters follow the same distribution, suggesting that the LMC's disk formed at about the same time as the globular clusters, ~ 13 Gyr ago. Finally, we have used our cluster distances in conjunction with the disk geometry to calculate the distance to the LMC center, for which we find (m-M)o = 18.40 +/- 0.04_{ran} +/- 0.08_{sys}, or Do = 47.9 +/- 0.9 +/- 1.8 kpc.Comment: 31 pages including 5 figures and 7 tables. Accepted for publication in the August 2007 issue of A

    The Formation of Massive Cluster Galaxies

    Full text link
    We present composite 3.6 and 4.5 micron luminosity functions for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey (SDWFS) for 0.3<z<2. We compare the evolution of m* for these luminosity functions to models for passively evolving stellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z < 1.3) our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift zf=2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainites of Delta zf=(+0.16-0.18) (model normalization), Delta zf=(+0.40-0.05) (alpha), and Delta zf=(+0.30-0.45) (choice of stellar population model). For a Salpeter type IMF, the typical formation epoch is thus strongly constrained to be z ~2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum et al 2008. At high redshift (z > 1.3) we also witness a statistically significant (>5sigma) disagreement between the measured luminosity function and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch.Comment: 17 pages, 14 figures, accepted for publication in Ap
    corecore