4 research outputs found

    Extended calibration range for prompt photon emission in ion beam irradiation

    Full text link
    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.Comment: 4 pages, 7 figures, Submitted to JINS

    90Y-DOTA-nimotuzumab: synthesis of a promising β⁻ radiopharmaceutical

    Get PDF
    BACKGROUND: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a beta- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach.METHODS: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50 fold excess of DOTA and then labelled with 90Y3+. The 90Y-DOTA-nimotuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the 90Y-DOTA-nimotuzumab stability was evaluated in human plasma.RESULTS: The radioimmunoconjugate 90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma.CONCLUSIONS: The optimized conditions for a mild and easy preparation of 90Y-DOTA-nimotuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for beta- radio-guided surgery

    90 Y-DOTA-Nimotuzumab: Synthesis of a Promising β− Radiopharmaceutical

    No full text
    Background: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a β- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach. Methods: The synthesis of90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50-fold excess of DOTA and then labelled with90Y3+. The90Y-DOTA-nimo-tuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the90Y-DOTA-nimotuzumab stability was evaluated in human plasma. Results: The radioimmunoconjugate90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma. Conclusions: The optimized conditions for a mild and easy preparation of90Y-DOTA-nimo-tuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for β- radio-guided surgery
    corecore