3 research outputs found

    Novel Acumens into Biodegradation: Impact of Nanomaterials and Their Contribution

    Get PDF
    Biodegradation is the most viable alternative for numerous health and environmental issues associated with non-biodegradable materials. In recent years, there has been considerable interest in biodegradable nanomaterials due to their relative abundance, environmental benignity, low cost, easy use, and tunable properties. This chapter covers an overview of biodegradation, factors and challenges associated with biodegradation processes, involvement of nanotechnology and nanomaterials in biodegradation, and biodegradable nanomaterials. Furthermore, current chapter extensively discusses the most recent applications of biodegradable nanomaterials that have recently been explored in the areas of food packaging, energy, environmental remediation, and nanomedicine. Overall, this chapter provides a synopsis of how the involvement of nanotechnology would benefit the process of biodegradation

    Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: enhanced anti-proliferative effect on breast and liver cancer cells

    No full text
    Abstract Ample attention has been devoted to the construction of anti-cancer drug delivery systems with increased stability, and controlled and targeted delivery, minimizing toxic effects. In this study we have designed a magnetically attractive hydroxyapatite (m-HAP) based alginate polymer bound nanocarrier to perform targeted, controlled and pH sensitive drug release of 6-gingerol, doxorubicin, and their combination, preferably at low pH environments (pH 5.3). They have exhibited higher encapsulation efficiency which is in the range of 97.4–98.9% for both 6-gingerol and doxorubicin molecules whereas the co-loading has accounted for a value of 81.87 ± 0.32%. Cell proliferation assays, fluorescence imaging and flow cytometric analysis, demonstrated the remarkable time and dose responsive anti-proliferative effect of drug loaded nanoparticles on MCF-7 cells and HEpG2 cells compared with their neat counter parts. Also, these systems have exhibited significantly reduced toxic effects on non-targeted, non-cancerous cells in contrast to the excellent ability to selectively kill cancerous cells. This study has suggested that this HAP based system is a versatile carrier capable of loading various drug molecules, ultimately producing a profound anti-proliferative effect
    corecore