43 research outputs found

    Neurosymbolic AI - Why, What, and How

    Get PDF
    Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. While datadriven neural network-based AI algorithms effectively model machine perception, symbolic knowledge-based AI is better suited for modeling machine cognition. This is because symbolic knowledge structures support explicit representations of mappings from perception outputs to the knowledge, enabling traceability and auditing of the AI system’s decisions. Such audit trails are useful for enforcing application aspects of safety, such as regulatory compliance and explainability, through tracking the AI system’s inputs, outputs, and intermediate steps. This first article in the Neurosymbolic AI department introduces and provides an overview of the rapidly emerging paradigm of Neurosymbolic AI, combining neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems

    Knowledge-infused Reinforcement Learning

    Get PDF
    Virtual health agents (VHAs) have received considerable attention, but the early focus has been on collecting data, helping patients follow generic health guidelines, and providing reminders for clinical appointments. While presenting the collected data and frequency of visits to the clinician is useful, further context and personalization are needed for a VHA to interpret and understand what the data means in clinical terms. This has made their use in managing health limited. Such understanding enables patient empowerment and self-appraisal – i.e., aiding the patient in interpreting the data to understand the changes in the patient’s health conditions, and self-management – i.e., to help a patient better manage their health through better adherence to the clinician guidelines and clinician recommended care plan. Crisis conditions such as the current pandemic have further stressed our healthcare system and have made the need for such advanced support more attractive and in demand. Consider the rapid growth in mental health because the patients who already had mental health conditions worsen, and many develop such conditions due to the challenges arising from lockdown, isolation, and economic hardships. The severe lack of timely availability of clinical expertise to meet the rapidly growing demand provides the motivation for advancing this research in developing more advanced VHAs and evaluating it in the context of mental health management

    L3 Ensembles: Lifelong Learning Approach for Ensemble of Foundational Language Models

    Full text link
    Fine-tuning pre-trained foundational language models (FLM) for specific tasks is often impractical, especially for resource-constrained devices. This necessitates the development of a Lifelong Learning (L3) framework that continuously adapts to a stream of Natural Language Processing (NLP) tasks efficiently. We propose an approach that focuses on extracting meaningful representations from unseen data, constructing a structured knowledge base, and improving task performance incrementally. We conducted experiments on various NLP tasks to validate its effectiveness, including benchmarks like GLUE and SuperGLUE. We measured good performance across the accuracy, training efficiency, and knowledge transfer metrics. Initial experimental results show that the proposed L3 ensemble method increases the model accuracy by 4% ~ 36% compared to the fine-tuned FLM. Furthermore, L3 model outperforms naive fine-tuning approaches while maintaining competitive or superior performance (up to 15.4% increase in accuracy) compared to the state-of-the-art language model (T5) for the given task, STS benchmark

    Knowledge Infused Policy Gradients with Upper Confidence Bound for Relational Bandits

    Get PDF
    Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.Comment: Accepted for publication in the research track at ECML-PKDD 202

    Tutorial: Neuro-symbolic AI for Mental Healthcare

    Get PDF
    Artificial Intelligence (AI) systems for mental healthcare (MHCare) have been ever-growing after realizing the importance of early interventions for patients with chronic mental health (MH) conditions. Social media (SocMedia) emerged as the go-to platform for supporting patients seeking MHCare. The creation of peer-support groups without social stigma has resulted in patients transitioning from clinical settings to SocMedia supported interactions for quick help. Researchers started exploring SocMedia content in search of cues that showcase correlation or causation between different MH conditions to design better interventional strategies. User-level Classification-based AI systems were designed to leverage diverse SocMedia data from various MH conditions, to predict MH conditions. Subsequently, researchers created classification schemes to measure the severity of each MH condition. Such ad-hoc schemes, engineered features, and models not only require a large amount of data but fail to allow clinically acceptable and explainable reasoning over the outcomes. To improve Neural-AI for MHCare, infusion of clinical symbolic knowledge that clinicans use in decision making is required. An impactful use case of Neural-AI systems in MH is conversational systems. These systems require coordination between classification and generation to facilitate humanistic conversation in conversational agents (CA). Current CAs with deep language models lack factual correctness, medical relevance, and safety in their generations, which intertwine with unexplainable statistical classification techniques. This lecture-style tutorial will demonstrate our investigations into Neuro-symbolic methods of infusing clinical knowledge to improve the outcomes of Neural-AI systems to improve interventions for MHCare:(a) We will discuss the use of diverse clinical knowledge in creating specialized datasets to train Neural-AI systems effectively. (b) Patients with cardiovascular disease express MH symptoms differently based on gender differences. We will show that knowledge-infused Neural-AI systems can identify gender-specific MH symptoms in such patients. (c) We will describe strategies for infusing clinical process knowledge as heuristics and constraints to improve language models in generating relevant questions and responses

    Process Knowledge-infused Learning for Suicidality Assessment on Social Media

    Get PDF
    Improving the performance and natural language explanations of deep learning algorithms is a priority for adoption by humans in the real world. In several domains, such as healthcare, such technology has significant potential to reduce the burden on humans by providing quality assistance at scale. However, current methods rely on the traditional pipeline of predicting labels from data, thus completely ignoring the process and guidelines used to obtain the labels. Furthermore, post hoc explanations on the data to label prediction using explainable AI (XAI) models, while satisfactory to computer scientists, leave much to be desired to the end users due to lacking explanations of the process in terms of human-understandable concepts. We introduce, formalize, and develop a novel Artificial Intelligence (A) paradigm - Process Knowledge infused Learning (PK-iL). PK-iL utilizes a structured process knowledge that explicitly explains the underlying prediction process that makes sense to end-users. The qualitative human evaluation confirms through a annotator agreement of 0.72, that humans are understand explanations for the predictions. PK-iL also performs competitively with the state-of-the-art (SOTA) baselines

    Knowledge Infused Policy Gradients for Adaptive Pandemic Control

    Get PDF
    COVID-19 has impacted nations differently based on their policy implementations. The effective policy requires taking into account public information and adaptability to new knowledge. Epidemiological models built to understand COVID-19 seldom provide the policymaker with the capability for adaptive pandemic control (APC). Among the core challenges to be overcome include (a) inability to handle a high degree of non-homogeneity in different contributing features across the pandemic timeline, (b) lack of an approach that enables adaptive incorporation of public health expert knowledge, and (c) transparent models that enable understanding of the decision-making process in suggesting policy. In this work, we take the early steps to address these challenges using Knowledge Infused Policy Gradient (KIPG) methods. Prior work on knowledge infusion does not handle soft and hard imposition of varying forms of knowledge in disease information and guidelines to necessarily comply with. Furthermore, the models do not attend to non-homogeneity in feature counts, manifesting as partial observability in informing the policy. Additionally, interpretable structures are extracted post-learning instead of learning an interpretable model required for APC. To this end, we introduce a mathematical framework for KIPG methods that can (a) induce relevant feature counts over multi-relational features of the world, (b) handle latent non-homogeneous counts as hidden variables that are linear combinations of kernelized aggregates over the features, and (b) infuse knowledge as functional constraints in a principled manner. The study establishes a theory for imposing hard and soft constraints and simulates it through experiments. In comparison with knowledge-intensive baselines, we show quick sample efficient adaptation to new knowledge and interpretability in the learned policy, especially in a pandemic context

    COVID-19 in Spain and India: Comparing Policy Implications by Analyzing Epidemiological and Social Media Data

    Get PDF
    The COVID-19 pandemic has forced public health experts to develop contingent policies to stem the spread of infection, including measures such as partial/complete lockdowns. The effectiveness of these policies has varied with geography, population distribution, and effectiveness in implementation. Consequently, some nations (e.g., Taiwan, Haiti) have been more successful than others (e.g., United States) in curbing the outbreak. A data-driven investigation into effective public health policies of a country would allow public health experts in other nations to decide future courses of action to control the outbreaks of disease and epidemics. We chose Spain and India to present our analysis on regions that were similar in terms of certain factors: (1) population density, (2) unemployment rate, (3) tourism, and (4) quality of living. We posit that citizen ideology obtainable from twitter conversations can provide insights into conformity to policy and suitably reflect on future case predictions. A milestone when the curves show the number of new cases diverging from each other is used to define a time period to extract policy-related tweets while the concepts from a causality network of policy-dependent sub-events are used to generate concept clouds. The number of new cases is predicted using sentiment scores in a regression model. We see that the new case predictions reflects twitter sentiment, meaningfully tied to a trigger sub-event that enables policy-related findings for Spain and India to be effectively compared
    corecore