76 research outputs found
Antivortices due to competing orbital and paramagnetic pair-breaking effects
Thermodynamically stable vortex-antivortex structures in a
quasi-two-dimensional superconductor in a tilted magnetic field are predicted.
For this geometry, both orbital and spin pair-breaking effects exist, with
their relative strength depending on the tilt angle \Theta. The spectrum of
possible states contains as limits the ordinary vortex state (for large \Theta)
and the Fulde-Ferrell-Larkin-Ovchinnikov state (for \Theta=0). The
quasiclassical equations are solved near H_{c2} for arbitrary \Theta and it is
shown that stable states with coexisting vortices and antivortices exist in a
small interval close to \Theta=0. The results are compared with recent
predictions of antivortices in mesoscopic samples.Comment: 11 pages, 3 figure
Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors
We propose a mechanism by which the paramagnetic pair-breaking effect is
largely reduced in superconductors with coexisting antiferromagnetic long-
range and short-range orders. The mechanism is an extension of the Jaccarino
and Peter mechanism to antiferromagnetic conductors, but the resultant phase
diagram is quite different. In order to illustrate the mechanism, we examine a
model which consists of mobile electrons and antiferromagnetically correlated
localized spins with Kondo coupling between them. It is found that for weak
Kondo coupling, the superconductivity occurs over an extraordinarily wide
region of the magnetic field including zero field. The critical field exceeds
the Chandrasekhar and Clogston limit, but there is no lower limit in contrast
to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo
coupling, both the low-field superconductivity and a field-induced
superconductivity occur. Possibilities in hybrid ruthenate cuprate
superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn.
Vol.71, No.3 (2002
Infrared and optical properties of pure and cobalt-doped LuNi_2B_2C
We present optical conductivity data for Lu(NiCo)BC over
a wide range of frequencies and temperatures for x=0 and x=0.09. Both materials
show evidence of being good Drude metals with the infrared data in reasonable
agreement with dc resistivity measurements at low frequencies. An absorption
threshold is seen at approximately 700 cm-1. In the cobalt-doped material we
see a superconducting gap in the conductivity spectrum with an absorption onset
at 24 +/- 2 cm-1 = 3.9$ +/- 0.4 k_BT_c suggestive of weak to moderately strong
coupling. The pure material is in the clean limit and no gap can be seen. We
discuss the data in terms of the electron-phonon interaction and find that it
can be fit below 600 cm-1 with a plasma frequency of 3.3 eV and an
electron-phonon coupling constant lambda_{tr}=0.33 using an alpha^{2}F(omega)
spectrum fit to the resistivity.Comment: 10 pages with 10 embedded figures, submitted to PR
Pairing competition in a quasi-one-dimensional model of organic superconductors (TMTSF) in magnetic field
We microscopically study the effect of the magnetic field (Zeeman splitting)
on the superconducting state in a model for quasi-one-dimensional organic
superconductors (TMTSF). We investigate the competition between spin
singlet and spin triplet pairings and the
Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state by random phase approximation.
While we studied the competition by comparison with the eigenvalue of the gap
equation at a fixed temperature in our previous study (Phys. Rev. Lett.
\textbf{102} (2009) 016403), here we obtain both the for each pairing
state and a phase diagram in the (temperature)-(field)-(strength
of the charge fluctuation) space. The phase diagram shows that consecutive
transitions from singlet pairing to the FFLO state and further to
triplet pairing can occur upon increasing the magnetic field when
charge fluctuations coexist with spin fluctuations. In the FFLO state,
the singlet d-wave and triplet -wave components are strongly mixed
especially when the charge fluctuations are strong.Comment: 11 pages, 9 figure
Magnetic field - temperature phase diagram of quasi-two-dimensional organic superconductor lambda-(BETS)_2 GaCl_4 studied via thermal conductivity
The thermal conductivity kappa of the quasi-two-dimensional (Q2D) organic
superconductor lambda-(BETS)_2 GaCl_4 was studied in the magnetic field H
applied parallel to the Q2D plane. The phase diagram determined from this bulk
measurement shows notable dependence on the sample quality. In dirty samples
the upper critical field H_{c2} is consistent with the Pauli paramagnetic
limiting, and a sharp change is observed in kappa(H) at H_{c2 parallel}. In
contrast in clean samples H_{c2}(T) shows no saturation towards low
temperatures and the feature in kappa(H) is replaced by two slope changes
reminiscent of second-order transitions. The peculiarity was observed below ~
0.33T_c and disappeared on field inclination to the plane when the orbital
suppression of superconductivity became dominant. This behavior is consistent
with the formation of a superconducting state with spatially modulated order
parameter in clean samples.Comment: 10 pages, 8 figures, new figure (Fig.5) and references added, title
change
Crystalline Color Superconductivity
In any context in which color superconductivity arises in nature, it is
likely to involve pairing between species of quarks with differing chemical
potentials. For suitable values of the differences between chemical potentials,
Cooper pairs with nonzero total momentum are favored, as was first realized by
Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort
spontaneously break translational and rotational invariance, leading to gaps
which vary periodically in a crystalline pattern. Unlike the original LOFF
state, these crystalline quark matter condensates include both spin zero and
spin one Cooper pairs. We explore the range of parameters for which crystalline
color superconductivity arises in the QCD phase diagram. If in some shell
within the quark matter core of a neutron star (or within a strange quark star)
the quark number densities are such that crystalline color superconductivity
arises, rotational vortices may be pinned in this shell, making it a locus for
glitch phenomena.Comment: 40 pages, LaTeX with eps figs. v2: New paragraph on Ginzburg-Landau
treatment of LOFF phase in section 5. References added. v3: Small changes
only. Version to appear in Phys. Rev.
Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a novel superconducting
state in a strong magnetic field characterized by the formation of Cooper pairs
with nonzero total momentum (k \uparrow, -k+q \downarrow), instead of the
ordinary BCS pairs (k \uparrow, -k \downarrow). A fascinating aspect of the
FFLO state is that it exhibits inhomogeneous superconducting phases with a
spatially oscillating order parameter and spin polarization. The FFLO state has
been of interest in various research fields, not only in superconductors in
solid state physics, but also in neutral Fermion superfluid of ultracold atomic
gases and in color superconductivity in high energy physics. In spite of
extensive studies of various superconductors, there has been no undisputed
experimental verification of the FFLO state, mainly because of the very
stringent conditions required of the superconducting materials. Among several
classes of materials, certain heavy fermion and organic superconductors are
believed to provide conditions that are favorable to the formation of the FFLO
state. This review presents recent experimental and theoretical developments of
the FFLO state mainly in heavy fermion superconductors. In particular we
address the recently discovered quasi-two-dimensional superconductor CeCoIn_5,
which is a strong candidate for the formation of the FFLO state.Comment: 17 pages, 12 figures with jpsf2.cls, to be published in J. Phys. Soc.
Jpn. (Special Topics - Frontiers of Novel Superconductivity in Heavy Fermion
Compounds
Deuterium isotope effects on 15N backbone chemical shifts in proteins
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries
Inhomogeneous Superconductivity in Condensed Matter and QCD
Inhomogeneous superconductivity arises when the species participating in the
pairing phenomenon have different Fermi surfaces with a large enough
separation. In these conditions it could be more favorable for each of the
pairing fermions to stay close to its Fermi surface and, differently from the
usual BCS state, for the Cooper pair to have a non zero total momentum. For
this reason in this state the gap varies in space, the ground state is
inhomogeneous and a crystalline structure might be formed. This situation was
considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and
the corresponding state is called LOFF. The spontaneous breaking of the space
symmetries in the vacuum state is a characteristic feature of this phase and is
associated to the presence of long wave-length excitations of zero mass. The
situation described here is of interest both in solid state and in elementary
particle physics, in particular in Quantum Chromo-Dynamics at high density and
small temperature. In this review we present the theoretical approach to the
LOFF state and its phenomenological applications using the language of the
effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic
Understanding the influence of race/Ethnicity, gender, and class on inequalities in academic and non-academic outcomes among eighth-grade students: findings from an intersectionality approach
Socioeconomic, racial/ethnic, and gender inequalities in academic achievement have been widely reported in the US, but how these three axes of inequality intersect to determine academic and non-academic outcomes among school-aged children is not well understood. Using data from the US Early Childhood Longitudinal Study—Kindergarten (ECLS-K; N = 10,115), we apply an intersectionality approach to examine inequalities across eighth-grade outcomes at the intersection of six racial/ethnic and gender groups (Latino girls and boys, Black girls and boys, and White girls and boys) and four classes of socioeconomic advantage/disadvantage. Results of mixture models show large inequalities in socioemotional outcomes (internalizing behavior, locus of control, and self-concept) across classes of advantage/disadvantage. Within classes of advantage/disadvantage, racial/ethnic and gender inequalities are predominantly found in the most advantaged class, where Black boys and girls, and Latina girls, underperform White boys in academic assessments, but not in socioemotional outcomes. In these latter outcomes, Black boys and girls perform better than White boys. Latino boys show small differences as compared to White boys, mainly in science assessments. The contrasting outcomes between racial/ethnic and gender minorities in self-assessment and socioemotional outcomes, as compared to standardized assessments, highlight the detrimental effect that intersecting racial/ethnic and gender discrimination have in patterning academic outcomes that predict success in adult life. Interventions to eliminate achievement gaps cannot fully succeed as long as social stratification caused by gender and racial discrimination is not addressed
- …