4 research outputs found

    Adaptation Advantage to Climate Change Impacts on Road Infrastructure in Africa through 2100

    Get PDF
    The African continent is facing the potential of a US183.6billionliabilitytorepairandmaintainroadsdamagedfromtemperatureandprecipitationchangesrelatedtoclimatechangethrough2100.Asdetailed,thecentralpartofthecontinentfacesthegreatestimpactfromclimatechangewithcountriesfacinganaveragecostofUS183.6 billion liability to repair and maintain roads damaged from temperature and precipitation changes related to climate change through 2100. As detailed, the central part of the continent faces the greatest impact from climate change with countries facing an average cost of US22 million annually, if they adopt a proactive adaptation policy and a US$54 million annual average, if a reactive approach is adopted. Additionally, countries face an average loss of opportunity to expand road networks from a low of 22 per cent to a high of 235 per cent in the central region.infrastructure, climate change, roads, cost estimates

    Adaptation advantage to climate change impacts on road infrastructure in Africa through 2100

    Full text link
    The African continent is facing the potential of a US183.6billionliabilitytorepairandmaintainroadsdamagedfromtemperatureandprecipitationchangesrelatedtoclimatechangethrough2100.Asdetailed,thecentralpartofthecontinentfacesthegreatestimpactfromclimatechangewithcountriesfacinganaveragecostofUS183.6 billion liability to repair and maintain roads damaged from temperature and precipitation changes related to climate change through 2100. As detailed, the central part of the continent faces the greatest impact from climate change with countries facing an average cost of US22 million annually, if they adopt a proactive adaptation policy and a US$54 million annual average, if a reactive approach is adopted. Additionally, countries face an average loss of opportunity to expand road networks from a low of 22 per cent to a high of 235 per cent in the central region

    Isoprenylcysteine Carboxy Methylation Is Essential for Development in Dictyostelium discoideum

    No full text
    Members of the Ras superfamily of small GTPases and the heterotrimeric G protein γ subunit are methylated on their carboxy-terminal cysteine residues by isoprenylcysteine methyltransferase. In Dictyostelium discoideum, small GTPase methylation occurs seconds after stimulation of starving cells by cAMP and returns quickly to basal levels, suggesting an important role in cAMP-dependent signaling. Deleting the isoprenylcysteine methyltransferase-encoding gene causes dramatic defects. Starving mutant cells do not propagate cAMP waves in a sustained manner, and they do not aggregate. Motility is rescued when cells are pulsed with exogenous cAMP, or coplated with wild-type cells, but the rescued cells exhibit altered polarity. cAMP-pulsed methyltransferase-deficient cells that have aggregated fail to differentiate, but mutant cells plated in a wild-type background are able to do so. Localization of and signaling by RasG is altered in the mutant. Localization of the heterotrimeric Gγ protein subunit was normal, but signaling was altered in mutant cells. These data indicate that isoprenylcysteine methylation is required for intercellular signaling and development in Dictyostelium
    corecore