20 research outputs found

    Muon Physics: A Pillar of the Standard Model

    Full text link
    Since its discovery in the 1930s, the muon has played an important role in our quest to understand the sub-atomic theory of matter. The muon was the first second-generation standard-model particle to be discovered, and its decay has provided information on the (Vector -Axial Vector) structure of the weak interaction, the strength of the weak interaction, G_F, and the conservation of lepton number (flavor) in muon decay. The muon's anomalous magnetic moment has played an important role in restricting theories of physics beyond the standard standard model, where at present there is a 3.4 standard-deviation difference between the experiment and standard-model theory. Its capture on the atomic nucleus has provided valuable information on the modification of the weak current by the strong interaction which is complementary to that obtained from nuclear beta decay.Comment: 8 pages, 9 figures. Invited paper for the Journal of Physical Society in Japan (JPSJ), Special Topics Issue "Frontiers of Elementary Particle Physics, The Standard Model and beyond

    Methods of merger of two ordered subfiles of different length

    No full text
    corecore