2 research outputs found

    High-Performing Biodegradable Waterborne Polyester/Functionalized Graphene Oxide Nanocomposites as an Eco-Friendly Material

    No full text
    The development of high-performing nanocomposites of homogeneously dispersed graphene oxide in a waterborne polyester matrix with controlled interfacial interactions is a daunting challenge owing to the presence of strong cohesive energy in both. Thus, in this study, graphene oxide was functionalized with toluene diisocyanate and butane diol through a simple method and incorporated into the waterborne polyester matrix through a facile in situ bulk polymerization technique without using any compatibilizing agent or organic solvent for the first time. The thermoset of the nanocomposite was formed by curing it with hyperbranched epoxy of glycerol and poly­(amido amine). The resultant thermosetting nanocomposites with 0.1–1 wt % functionalized graphene oxide exhibited significant enhancement in mechanical properties such as elongation at break (245–360%), tensile strength (7.8–39.4 MPa), scratch hardness (4 to >10 kg), toughness (17.18–86.35 MJ/m<sup>3</sup>), Young’s modulus (243–358 MPa), impact resistance (8.3 to >9.3 kJ/m), and thermostability. Further, the Halpin–Tsai model was used to predict the alignment of graphene oxide. The nanocomposite was also biodegradable against the Pseudomonas aeruginosa bacterial strain. Furthermore, this nanocomposite exhibited strong catalytic activity for the aza-Michael addition reaction. Thus, the nanocomposite can be utilized as a high-performing sustainable material in different potential applications including as heterogeneous catalysts

    Antioxidative, Hemocompatible, Fluorescent Carbon Nanodots from an “End-of-Pipe” Agricultural Waste: Exploring Its New Horizon in the Food-Packaging Domain

    No full text
    The attention of researchers is burgeoning toward oilseed press-cake valorization for its high protein content. Protein removal from oil-cakes generates large quantities of fibrous residue (oil-and-protein spent meal) as a byproduct, which currently has very limited practical utility. In the wake of increasing awareness in waste recycling, a simple environmentally benign hydrothermal carbonization process to convert this “end-of-pipe” waste (spent meal) into antioxidative, hemocompatible, fluorescent carbonaceous nanoparticles (FCDs) has been described. In the present investigation, an interesting application of FCDs in fabricating low-cost rapeseed protein-based fluorescent film, with improved antioxidant potential (17.5–19.3-fold) and thermal stability has been demonstrated. The nanocomposite film could also be used as forgery-proof packaging due to its photoluminescence property. For assessing the feasibility of antioxidative FCDs in real food systems, a comparative investigation was further undertaken to examine the effect of such nanocarbon-loaded composite film on the oxidative shelf life of rapeseed oil. Oil samples packed in nanocomposite film sachets showed significant delay in oxidative rancidity compared to those packed in pristine protein-film sachet (free fatty acids, peroxide value, and thiobarbituric acid-reactive substances reduced up to 1.4-, 2-, and 1.2-fold, respectively). The work presents a new concept of biobased fluorescent packaging and avenues for harnessing this potent waste
    corecore