3 research outputs found

    Coregistration of High Resolution EEG and Fast optical signal (Fast NIRS) in epileptic children

    No full text
    Les pointes épileptiques intercritiques (IES) représentent une signature neuronale de l'activation transitoire hypersynchrone et excessive d'un grand ensemble de neurones corticaux hétérogènes. Elles sont considérées comme la signature de l’épileptogénicité du réseau neuronal sous-jacent. Dans cette étude, des changements sur la configuration neurale ont été observés chez des modèles animaux et humains au cours de l'IES. Pour la première fois, ces changements ont été détectés à l'aide de la spectroscopie optique rapide (FOS), qui correspond aux variations de la lumière diffusée par le tissu neural pendant l'activation. Ces chages [i.e. changements] sont associés à des mécanismes cellulaires plutôt qu'à des réponses hémodynamiques à haute résolution spatiale et temporelle. Pour étudier le mécanisme IES, une analyse simultanée multimodale des changements optiques rapides (FOS) et électriques (EEG/ECoG: temps et fréquence) a été développée chez des modèles animaux (15 rats) et humains (IES frontales,3 enfants). Pour évaluer de manière indépendante nos méthodes, un potentiel évoquant somatosensoriel et une réponse optique ont été conçus dans des modèles animaux et humains (5 volontaires sains).Les résultats suggèrent une relation entre la (dé)synchronisation et les changements optiques quel que soit le modèle épileptique. Nous avons démontré que cette approche multimodale non invasive multi-échelles (FOS, ECoG / EEG) permet d'étudier la physiopathologie de l'IES chez les patients et de mieux comprendre les mécanismes qui propulsent les neurones vers l'hypersynchronisation chez les modèles épileptiques humains et animauxInterictal epileptic spikes (IES) represent a signature of the transient synchronous and excessive discharge of a large ensemble of cortical heterogeneous neurons and are widely accepted diagnostically as a signature of an epileptic underlying network. In this study, changes on neural configuration were observed in an animal and human models during the IES. For the first time, these changes were detected using Fast Optical Spectroscopy (FOS), which correspond to variations of scattered light from neural tissue during activation. These chages [i.e. changes] are associated with cellular mechanisms rather than hemodynamic responses with high spatial and temporal resolution. To investigate IES mechanism, a multimodal simultaneous analysis of the fast optical (FOS) and electrical (EEG/ECoG: time and frequency domain) changes was developed in both animal (15 rats) and human models (frontal IES, 3 children). To independently evaluate our methods, a control somatosensory evoked potential and optical response was designed in both animal and human models (5 healthy volunteers). The results suggest a relationship between (de)synchronization and optical changes whatever the epileptic model. This also proposed that changes in the fast optical signal which reflect changes in membrane configuration, are associated with the complex perturbations of the neuronal activation of the epileptic networks. We demonstrated that this non-invasive multiscale multimodal approach (FOS, ECoG/EEG) is suitable to study the pathophysiology of the IES in patients and shed new light on the mechanisms that propel neurons to the hypersynchronization in both animal and human epileptic model

    Theta but not beta power is positively associated with better explicit motor task learning

    No full text
    Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can facilitate the development of more effective learning methods. Previous studies have focused on the role of the beta band (14–30 Hz) because of its clear response during motor activity. However, it is difficult to discriminate between beta activity related to learning a movement and performing the movement. In this study, we analysed differences in the electroencephalography (EEG) power spectra of complex and simple explicit sequential motor tasks in healthy young subjects. The complex motor task (CMT) allowed EEG measurement related to motor learning. In contrast, the simple motor task (SMT) made it possible to control for EEG activity associated with performing the movement without significant motor learning. Source reconstruction of the EEG revealed task-related activity from 5 clusters covering both primary motor cortices (M1) and 3 clusters localised to different parts of the cingulate cortex (CC). We found no association between M1 beta power and learning, but the CMT produced stronger bilateral beta suppression compared to the SMT. However, there was a positive association between contralateral M1 theta (5–8 Hz) and alpha (8–12 Hz) power and motor learning, and theta and alpha power in the posterior mid-CC and posterior CC were positively associated with greater motor learning. These findings suggest that the theta and alpha bands are more related to motor learning than the beta band, which might merely relate to the level of perceived difficulty during learning
    corecore