1,095 research outputs found

    A Multi-task Learning Approach for Improving Product Title Compression with User Search Log Data

    Full text link
    It is a challenging and practical research problem to obtain effective compression of lengthy product titles for E-commerce. This is particularly important as more and more users browse mobile E-commerce apps and more merchants make the original product titles redundant and lengthy for Search Engine Optimization. Traditional text summarization approaches often require a large amount of preprocessing costs and do not capture the important issue of conversion rate in E-commerce. This paper proposes a novel multi-task learning approach for improving product title compression with user search log data. In particular, a pointer network-based sequence-to-sequence approach is utilized for title compression with an attentive mechanism as an extractive method and an attentive encoder-decoder approach is utilized for generating user search queries. The encoding parameters (i.e., semantic embedding of original titles) are shared among the two tasks and the attention distributions are jointly optimized. An extensive set of experiments with both human annotated data and online deployment demonstrate the advantage of the proposed research for both compression qualities and online business values.Comment: 8 Pages, accepted at AAAI 201

    Research on Parametric Model for Surface Processing Prediction of Aero-Engine Blades

    Get PDF
    This paper presented a method for establishing a blade surface machining prediction model based on a parametric model. The abrasive grain state of the grinding tool was divided into initial wear stage, stable wear stage and sharp wear stage. Based on this, a parametric prediction model of engine blade surface material removal was established. In this paper, the simulation of blade surface machining was carried out. In this work, the blade was divided into several sections according to the direction from the blade root to the blade tip. A certain curve of the outer contour was fitted with a specific arc to reduce the calculation amount. Through a series of simulation calculations, the expressions of the above parametric prediction model were obtained, and several experiments were carried out to verify the feasibility of the prediction model, and the results were analyzed

    Sample Size Determination for Interval Estimation of the Prevalence of a Sensitive Attribute Under Randomized Response Models

    Get PDF
    © 2022 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Studies with sensitive questions should include a sufficient number of respondents to adequately address the research interest. While studies with an inadequate number of respondents may not yield significant conclusions, studies with an excess of respondents become wasteful of investigators’ budget. Therefore, it is an important step in survey sampling to determine the required number of participants. In this article, we derive sample size formulas based on confidence interval estimation of prevalence for four randomized response models, namely, the Warner’s randomized response model, unrelated question model, item count technique model and cheater detection model. Specifically, our sample size formulas control, with a given assurance probability, the width of a confidence interval within the planned range. Simulation results demonstrate that all formulas are accurate in terms of empirical coverage probabilities and empirical assurance probabilities. All formulas are illustrated using a real-life application about the use of unethical tactics in negotiation.Peer reviewe

    (E)-Nâ€Č-[1-(4-Chloro­phen­yl)ethyl­idene]-2-hydroxy­benzohydrazide

    Get PDF
    In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 7.0 (1)°. An intra­molecular N—H⋯O hydrogen bond is present and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along [001]

    Theoretical prediction of diffusive ionic current through nanopores under salt gradients

    Full text link
    In charged nanopores, ionic diffusion current reflects the ionic selectivity and ionic permeability of nanopores which determines the performance of osmotic energy conversion, i.e. the output power and efficiency. Here, theoretical predictions of the diffusive currents through cation-selective nanopores have been developed based on the investigation of diffusive ionic transport under salt gradients with simulations. The ionic diffusion current I satisfies a reciprocal relationship with the pore length I correlates with a/L (a is a constant) in long nanopores. a is determined by the cross-sectional areas of diffusion paths for anions and cations inside nanopores which can be described with a quadratic power of the diameter, and the superposition of a quadratic power and a first power of the diameter, respectively. By using effective concentration gradients instead of nominal ones, the deviation caused by the concentration polarization can be effectively avoided in the prediction of ionic diffusion current. With developed equations of effective concentration difference and ionic diffusion current, the diffusion current across nanopores can be well predicted in cases of nanopores longer than 100 nm and without overlapping of electric double layers. Our results can provide a convenient way for the quantitative prediction of ionic diffusion currents under salt gradients

    Multi-device wind turbine power generation forecasting based on hidden feature embedding

    Get PDF
    In recent years, the global installed capacity of wind power has grown rapidly. Wind power forecasting, as a key technology in wind turbine systems, has received widespread attention and extensive research. However, existing studies typically focus on the power prediction of individual devices. In the context of multi-turbine scenarios, employing individual models for each device may introduce challenges, encompassing data dilution and a substantial number of model parameters in power generation forecasting tasks. In this paper, a single-model method suitable for multi-device wind power forecasting is proposed. Firstly, this method allocates multi-dimensional random vectors to each device. Then, it utilizes space embedding techniques to iteratively evolve the random vectors into representative vectors corresponding to each device. Finally, the temporal features are concatenated with the corresponding representative vectors and inputted into the model, enabling the single model to accomplish multi-device wind power forecasting task based on device discrimination. Experimental results demonstrate that our method not only solves the data dilution issue and significantly reduces the number of model parameters but also maintains better predictive performance. Future research could focus on using more interpretable space embedding techniques to observe representation vectors of wind turbine equipment and further explore their semantic features

    Modulation Mechanism of Ionic Transport through Short Nanopores by Charged Exterior Surfaces

    Full text link
    Short nanopores have various applications in biosensing, desalination, and energy conversion. Here, the modulation of charged exterior surfaces on ionic transport is investigated through simulations with sub-200 nm long nanopores under applied voltages. Detailed analysis of ionic current, electric field strength, and fluid flow inside and outside nanopores reveals that charged exterior surfaces can increase ionic conductance by increasing both the concentration and migration speed of charge carriers. The electric double layers near charged exterior surfaces provide an ion pool and an additional passageway for counterions, which lead to enhanced exterior surface conductance and ionic concentrations at pore entrances and inside the nanopore. We also report that charges on the membrane surfaces increase electric field strengths inside nanopores. The effective width of a ring with surface charges placed at pore entrances (Lcs) is considered as well by studying the dependence of the current on Lcs. We find a linear relationship between the effective Lcs and the surface charge density and voltage, and an inverse relationship between the geometrical pore length and salt concentration. Our results elucidate the modulation mechanism of charged exterior surfaces on ionic transport through short nanopores, which is important for the design and fabrication of porous membranes.Comment: 27 pages, 6 figure
    • 

    corecore