17 research outputs found

    Concomitant intraperitoneal and systemic chemotherapy for extensive peritoneal metastases of colorectal origin: protocol of the multicentre, open-label, phase I, dose-escalation INTERACT trial

    Get PDF
    INTRODUCTION: Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) has become standard of care for patients with peritoneal metastases of colorectal origin with a low/moderate abdominal disease load. In case of a peritoneal cancer index (PCI) score >20, CRS-HIPEC is not considered to be beneficial. Patients with a PCI >20 are currently offered palliative systemic chemotherapy. Previous studies have shown that systemic chemotherapy is less effective against peritoneal metastases than it is against haematogenous spread of colorectal cancer. It is suggested that patients with peritoneal metastases may benefit from the addition of intraperitoneal chemotherapy to systemic chemotherapy. Aim of this study is to establish the maximum tolerated dose of intraperitoneal irinotecan, added to standard of care systemic therapy for colorectal cancer. Secondary endpoints are to determine the safety and feasibility of this treatment and to establish the pharmacokinetic profile of intraperitoneally administered irinotecan. METHODS AND ANALYSIS: This phase I, '3+3' dose-escalation, study is performed in two Dutch tertiary referral centres. The study population consists of adult pa

    “There Is No (Where a) Face Like Home”: Recognition and Appraisal Responses to Masked Facial Dialects of Emotion in Four Different National Cultures

    Get PDF
    The theory of universal emotions suggests that certain emotions such as fear, anger, disgust, sadness, surprise and happiness can be encountered cross-culturally. These emotions are expressed using specific facial movements that enable human communication. More recently, theoretical and empirical models have been used to propose that universal emotions could be expressed via discretely different facial movements in different cultures due to the non-convergent social evolution that takes place in different geographical areas. This has prompted the consideration that own-culture emotional faces have distinct evolutionary important sociobiological value and can be processed automatically, and without conscious awareness. In this paper, we tested this hypothesis using backward masking. We showed, in two different experiments per country of origin, to participants in Britain, Chile, New Zealand and Singapore, backward masked own and other-culture emotional faces. We assessed detection and recognition performance, and self-reports for emotionality and familiarity. We presented thorough cross-cultural experimental evidence that when using Bayesian assessment of non-parametric receiver operating characteristics and hit-versus-miss detection and recognition response analyses, masked faces showing own cultural dialects of emotion were rated higher for emotionality and familiarity compared to other-culture emotional faces and that this effect involved conscious awareness

    想像立新

    Full text link

    Photochemical internalization enhances cytosolic release of antibiotic and increases its efficacy against staphylococcal infection

    Get PDF
    Bacterial pathogens such as Staphylococcus aureus and Staphylococcus epidermidis can survive in different types of cells including professional phagocytes, causing intracellular infections. Antibiotic treatment of intracellular infections is often unsuccessful due to the low efficacy of most antibiotics inside cells. Therefore, novel techniques which can improve intracellular activity of antibiotics are urgently needed. We aimed to use photochemical internalization (PCI) to enhance cytosolic release of antibiotics from endocytic vesicles after internalization. Our results show that PCI indeed caused cytosolic release of gentamicin and significantly increased its efficacy against S. epidermidis in vitro in mouse macrophages. Upon illumination for 15 min, the killing of intracellular S. epidermidis in RAW 264.7 cells by 10 or 30 μg/ml gentamicin was increased to 1 or 3 CFU log, respectively, owing to the use of PCI, whereas no killing by gentamicin only without PCI was observed. Moreover, survival of S. aureus-infected zebrafish embryos was significantly improved by treatment with PCI-gentamicin. PCI improved the therapeutic efficacy of gentamicin at a dose of 0.1 ng per embryo to a level similar to that of a dose of 0.4 ng per embryo, indicating that PCI can lower the antibiotic dose required for treating (intracellular) staphylococcal infection. Thus, the present study shows that PCI is a promising novel approach to enhance the intracellular efficacy of antibiotics via cytosolic release, allowing them to reach intracellular bacteria. This will expand their therapeutic window and will increase the numbers of antibiotics which can be used for treatment of intracellular infections

    Regulation of intestinal permeability : the role of proteases

    No full text
    The gastrointestinal barrier is - with approximately 400 m(2) - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases

    Characterization of Mice Lacking the Tetraspanin Superfamily Member CD151

    No full text
    The tetraspanin membrane protein CD151 is a broadly expressed molecule noted for its strong molecular associations with integrins, especially α3β1, α6β1, α7β1, and α6β4. In vitro functional studies have pointed to a role for CD151 in cell-cell adhesion, cell migration, platelet aggregation, and angiogenesis. It has also been implicated in epithelial tumor progression and metastasis. Here we describe the generation and initial characterization of CD151-null mice. The mice are viable, healthy, and fertile and show normal Mendelian inheritance. They have essentially normal blood and bone marrow cell counts and grossly normal tissue morphology, including hemidesmosomes in skin, and expression of α3 and α6 integrins. However, the CD151-null mice do show phenotypes in several different tissue types. An absence of CD151 leads to a minor abnormality in hemostasis, with CD151-null mice showing longer average bleeding times, greater average blood loss, and an increased incidence of rebleeding occurrences. CD151-null keratinocytes migrate poorly in skin explant cultures. Finally, CD151-null T lymphocytes are hyperproliferative in response to in vitro mitogenic stimulation

    A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease

    Get PDF
    Author summaryHirschsprung disease (HSCR) is a rare developmental disorder. It leads to the absence of enteric nerve cells (aganglionosis) in the large intestine and is caused by functional defects of neuronal precursor cells during embryonic development of the gut nervous system. The aganglionosis manifests as a variety of symptoms including impaired peristalsis and the formation of a pathogenic dilatation of the intestine (megacolon). The etiology of HSCR is considered to be multifactorial. Variants in more than 20 genes have been reported to be overrepresented in HSCR and replicated in independent cohorts. However, variants in those risk genes account for only 30% of all cases, suggesting that many more genes have to be implicated in the development of HSCR. As the identification and the subsequent validation of novel gene variants to be disease-causing or not, still remains a major challenge, we established and applied a complementary study pipeline. This enabled us to identify four novel candidate genes in two HSCR patients and to validate their potential disease relevance. Our approach represents a suitable way to dissect the complex genetic architecture underlying HSCR.Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.</p
    corecore