1,875 research outputs found

    Development of a hybrid magnetic resonance/computed tomography-compatible phantom for magnetic resonance guided radiotherapy

    Get PDF
    The purpose of the present study was to develop a hybrid magnetic resonance/computed tomography (MR/CT)-compatible phantom and tissue-equivalent materials for each MR and CT image. Therefore, the essential requirements necessary for the development of a hybrid MR/CT-compatible phantom were determined and the development process is described. A total of 12 different tissue-equivalent materials for each MR and CT image were developed from chemical components. The uniformity of each sample was calculated. The developed phantom was designed to use 14 plugs that contained various tissue-equivalent materials. Measurement using the developed phantom was performed using a 3.0-T scanner with 32 channels and a Somatom Sensation 64. The maximum percentage difference of the signal intensity (SI) value on MR images after adding K2CO3 was 3.31%. Additionally, the uniformity of each tissue was evaluated by calculating the percent image uniformity (%PIU) of the MR image, which was 82.18 ±1.87% with 83% acceptance, and the average circular-shaped regions of interest (ROIs) on CT images for all samples were within ±5 Hounsfield units (HU). Also, dosimetric evaluation was performed. The percentage differences of each tissue-equivalent sample for average dose ranged from -0.76 to 0.21%. A hybrid MR/CT-compatible phantom for MR and CT was investigated as the first trial in this field of radiation oncology and medical physics

    Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM) of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance

    Tetra-μ-benzoato-bis­[(6-methyl­quino­line)­copper(II)]

    Get PDF
    In the title compound, [Cu2(C7H5O2)4(C10H9N)2], the paddle-wheel-type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methyl­quinoline ligands. The asymmetric unit contains one-half of the whole mol­ecule, and there is an inversion center at the mid-point of the Cu⋯Cu bond. The octa­hedral coordination of each Cu atom, with four O atoms in the equatorial plane, is completed by the N atom of the 6-methyl­quinoline mol­ecule [Cu—N = 2.212 (2) Å] and by another Cu atom [Cu⋯Cu = 2.6939 (13) Å]. The Cu atom lies 0.234 Å out of the plane of the four O atoms. The molecular packing is stabilized by one intramolecular C—H⋯O as well as C—H⋯π and π–π interactions

    Functional Encryption for Computational Hiding in Prime Order Groups via Pair Encodings

    Get PDF
    Lewko and Waters introduced the computational hiding technique in Crypto\u2712. In their technique, two computational assumptions that achieve selective and co-selective security proofs lead to adaptive security of an encryption scheme. Later, pair encoding framework was introduced by Attrapadung in Eurocrypt\u2714. The pair encoding framework generalises the computational hiding technique for functional encryption (FE). It has been used to achieve a number of new FE schemes such as FE for regular languages and unbounded attribute based encryption allowing multi-use of attributes. Nevertheless, the generalised construction of Attrapadung\u27s pair encoding for those schemes is adaptively secure only in composite order groups, which leads to efficiency loss. It remains a challenging task to explore constructions in prime order groups for gaining efficiency improvement, which leaves the research gap in the existing literature. In this work, we aim to address this drawback by proposing a new generalised construction for pair encodings in prime order groups. Our construction will lead to a number of new FE schemes in prime order groups, which have been previously introduced only in composite order groups by Attrapadung

    Determinants of sensitization to allergen in infants and young children

    No full text
    Atopic sensitization is a complex phenomenon that changes dynamically with age throughout childhood; its prevalence increases with age in young children. Additionally, with increasing age, the prevalence of sensitization to inhalant allergens and the prevalence of polysensitization to allergens increase. It is also well established that the development of atopic sensitization is the result of a complex interplay of genetic and environmental factors. However, there is considerable heterogeneity in the literature in terms of the effect of different environmental exposures in young children on the subsequent risk of atopic sensitization and allergic diseases. Previous studies on the relationship, in early life, between pet ownership, sex, exposure to secondhand smoke, exposure to traffic-related air pollution components, and atopic sensitization have yielded different results. Recent studies have highlighted the importance of gene-environment interactions, especially during early childhood, on the risk of subsequent atopic sensitization and allergic diseases. Therefore, pediatricians should consider the genetic and environmental determinants of atopic sensitization in infants and young children when diagnosing and treating patients with allergic diseases. Determining ways in which early exposure to these risk factors in young children may be reduced could be beneficial in preventing the likelihood of developing atopic sensitization

    Phospholipase D1 Mediates AMP-Activated Protein Kinase Signaling for Glucose Uptake

    Get PDF
    Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1) activation is required for (14)C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT) stimulates PLD activity, while AMPK-dominant negative (DN) inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14)C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14)C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK) is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA), which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14)C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator) regulate (14)C-glucose uptake and cell surface glucose transport (GLUT) 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14)C-glucose uptake through ERK stimulation. We propose that the AMPK-mediated PLD1 pathway may provide crucial clues to understanding the mechanisms involved in glucose uptake

    Structural studies on Helicobacter pylori ATP-dependent protease, FtsH

    Get PDF
    The crystal structures of the Helicobacter pylori FtsH ATPase domain in the nucleotide-free state and complexed with ADP have been determined

    Elective Laparoscopic Repair after Colonoscopic Decompression for Incarcerated Morgagni Hernia

    Get PDF
    Plain radiographs of an 88-year-old woman who had experienced vomiting and abdominal distention for 3 days revealed a severely obstructed ileus, and abdominopelvic computed tomography revealed an incarcerated Morgagni hernia. The endoscope was passed through the constrictions from the diaphragmatic indentations and a thin catheter was placed for decompression. The obstructive ileus regressed markedly after the procedure; the patient underwent elective laparoscopic repair of the hernia 1 week later. This is believed to be the first case of endoscopic preoperative decompression for an incarcerated Morgagni hernia

    Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    Get PDF
    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron-and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.open111522Nsciescopu
    corecore