67 research outputs found

    Autoreactive B Cell Regulation: Peripheral Induction of Developmental Arrest by Lupus-Associated Autoantigens

    Get PDF
    Anti-Sm and anti-ssDNA transgenic (Tg) mice were generated using the VH-D-JH rearrangement of an anti-Sm hybridoma of MRL/Mp-lpr/lpr origin. B cells of each specificity account for 15%–35% of the splenic repertoire, but no circulating anti-Sm or anti-ssDNA antibodies are detected. Most autoreactive cells exhibit an immature B cell phenotype and have short half-lives equivalent to those of non-Tg immature B cells. However, at least some anti-Sm B cells are functional, because immunization with murine snRNPs induces anti-Sm secretion. We propose that anti-Sm and anti-ssDNA are eliminated during the transition to mature B cells and that this late stage of tolerance induction is consequential to their spontaneous activation in murine lupus

    RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement

    Get PDF
    Previous studies (Leadbetter, E.A., I.R. Rifkin, A.H. Hohlbaum, B. Beaudette, M.J. Shlomchik, and A. Marshak-Rothstein. 2002. Nature. 416:603–607; Viglianti, G.A., C.M. Lau, T.M. Hanley, B.A. Miko, M.J. Shlomchik, and A. Marshak-Rothstein. 2003. Immunity. 19:837–847) established the unique capacity of DNA and DNA-associated autoantigens to activate autoreactive B cells via sequential engagement of the B cell antigen receptor (BCR) and Toll-like receptor (TLR) 9. We demonstrate that this two-receptor paradigm can be extended to the BCR/TLR7 activation of autoreactive B cells by RNA and RNA-associated autoantigens. These data implicate TLR recognition of endogenous ligands in the response to both DNA- and RNA-associated autoantigens. Importantly, the response to RNA-associated autoantigens was markedly enhanced by IFN-α, a cytokine strongly linked to disease progression in patients with systemic lupus erythematosus (SLE). As further evidence that TLRs play a key role in autoantibody responses in SLE, we found that autoimmune-prone mice, lacking the TLR adaptor protein MyD88, had markedly reduced chromatin, Sm, and rheumatoid factor autoantibody titers

    Borrelia miyamotoi

    Get PDF
    Borrelia miyamotoi sensu lato, a relapsing fever Borrelia sp., is transmitted by the same ticks that transmit B. burgdorferi (the Lyme disease pathogen) and occurs in all Lyme disease–endemic areas of the United States. To determine the seroprevalence of IgG against B. miyamotoi sensu lato in the northeastern United States and assess whether serum from B. miyamotoi sensu lato–infected persons is reactive to B. burgdorferi antigens, we tested archived serum samples from area residents during 1991–2012. Of 639 samples from healthy persons, 25 were positive for B. miyamotoi sensu lato and 60 for B. burgdorferi. Samples from ≈10% of B. miyamotoi sensu lato–seropositive persons without a recent history of Lyme disease were seropositive for B. burgdorferi. Our resultsA suggest thatA human B. miyamotoiA sensu latoA infection may be common in southern New England and that B. burgdorferi antibody testing is not an effective surrogate for detecting B. miyamotoi sensu lato infection

    Memory CD4(+) T cells do not induce graft-versus-host disease

    No full text
    Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality in allogeneic stem cell transplantation (alloSCT). Donor T cells that accompany stem cell grafts cause GVHD by attacking recipient tissues; therefore, all patients receive GVHD prophylaxis by depletion of T cells from the allograft or through immunosuppressant drugs. In addition to providing a graft-versus-leukemia effect, donor T cells are critical for reconstituting T cell–mediated immunity. Ideally, immunity to infectious agents would be transferred from donor to host without GVHD. Most donors have been exposed to common pathogens and have an increased precursor frequency of memory T cells against pathogenic antigens. We therefore asked whether memory CD62L(–)CD44(+) CD4(+) T cells would induce less GVHD than unfractionated or naive CD4(+) T cells. Strikingly, we found that memory CD4 cells induced neither clinical nor histologic GVHD. This effect was not due to the increased number of CD4(+)CD25(+) regulatory T cells found in the CD62L(–)CD44(+) fraction because memory T cells depletion of these cells did not cause GVHD. Memory CD4 cells engrafted and responded to antigen both in vivo and in vitro. If these murine results are applicable to human alloSCT, selective administration of memory T cells could greatly improve post-transplant immune reconstitution

    Oxidative Modifications in Tissue Pathology and Autoimmune Disease

    No full text
    SIGNIFICANCE:Various autoimmune syndromes are characterized by abnormalities found at the level of tissues and cells, as well as by microenvironmental influences, such as reactive oxygen species (ROS), that alter intracellular metabolism and protein expression. Moreover, the convergence of genetic, epigenetic, and even environmental influences can result in B and T lymphocyte autoimmunity and tissue pathology. Recent Advances: This review describes how oxidative stress to cells and tissues may alter post-translational protein modifications, both directly and indirectly, as well as potentially lead to aberrant gene expression. For example, it has been clearly observed in many systems how oxidative stress directly amplifies carbonyl protein modifications. However, ROS also lead to a number of nonenzymatic spontaneous modifications including deamidation and isoaspartate modification as well as to enzyme-mediated citrullination of self-proteins. ROS have direct effects on DNA methylation, leading to influences in gene expression, chromosome inactivation, and the silencing of genetic elements. Finally, ROS can alter many other cellular pathways, including the initiation of apoptosis and NETosis, triggering the release of modified intracellular autoantigens. CRITICAL ISSUES:This review will detail specific post-translational protein modifications, the pathways that control autoimmunity to modified self-proteins, and how products of ROS may be important biomarkers of tissue pathogenesis. FUTURE DIRECTIONS:A clear understanding of the many pathways affected by ROS will lead to potential therapeutic manipulations to alter the onset and/or progression of autoimmune disease
    • …
    corecore