37 research outputs found

    The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology

    Get PDF
    Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request even using natural language as input. In this paper we present the first application of generative adversarial autoencoders (AAE) for generating novel molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output the AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, which when negative indicates the reduction in the number of tumor cells after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anticancer properties. This approach is a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties

    ARDD 2020: from aging mechanisms to interventions

    Get PDF
    Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA

    Toward a broader view of mechanisms of drug cardiotoxicity

    No full text
    Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling

    Dual transcriptomic and molecular machine learning predicts all major clinical forms of drug cardiotoxicity

    No full text
    Computational methods can increase productivity of drug discovery pipelines, through overcoming challenges such as cardiotoxicity identification. We demonstrate prediction and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types using a machine learning approach on a large collected and curated dataset of transcriptional and molecular profiles (1,131 drugs, 35% with known cardiotoxicities, and 9,933 samples). The algorithm generality is demonstrated through validation in an independent drug dataset, in addition to cross-validation. The best prediction attains an average accuracy of 79% in area under the curve (AUC) for safe versus risky drugs, across all six cardiotoxicity types on validation and 66% on the unseen set of drugs. Individual cardiotoxicities for specific drug types are also predicted with high accuracy, including cardiac disorder signs and symptoms for a previously unseen set of anti-inflammatory agents (AUC = 80%) and heart failures for an unseen set of anti-neoplastic agents (AUC = 76%). Besides, independent testing on transcriptional data from the Drug Toxicity Signature Generation Center (DToxS) produces similar results in terms of accuracy and shows an average AUC of 72% for previously seen drugs and 60% for unseen respectively. Given the ubiquitous manifestation of multiple drug adverse effects in every human organ, the methodology is expected to be applicable to additional tissue-specific side effects beyond cardiotoxicity

    The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology

    No full text
    Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request even using natural language as input. In this paper we present the first application of generative adversarial autoencoders (AAE) for generating novel molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output the AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, which when negative indicates the reduction in the number of tumor cells after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anticancer properties. This approach is a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties

    The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology

    No full text
    Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request even using natural language as input. In this paper we present the first application of generative adversarial autoencoders (AAE) for generating novel molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output the AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, which when negative indicates the reduction in the number of tumor cells after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anticancer properties. This approach is a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties
    corecore