5 research outputs found

    A Metabolomic and HPLC-MS/MS Analysis of the Foliar Phenolics, Flavonoids and Coumarins of the <i>Fraxinus</i> Species Resistant and Susceptible to Emerald Ash Borer

    No full text
    The Emerald Ash Borer (EAB), Agrilus planipennis, Fairmaire, an Asian invasive alien buprestid has devastated tens of millions of ash trees (Fraxinus spp.) in North America. Foliar phytochemicals of the genus Fraxinus (Oleaceae): Fraxinus pennsylvanica (Green ash), F. americana (White ash), F. profunda (Bush) Bush. (Pumpkin ash), F. quadrangulata Michx. (Blue ash), F. nigra Marsh. (Black ash) and F. mandshurica (Manchurian ash) were investigated using HPLC-MS/MS and untargeted metabolomics. HPLC-MS/MS help identified 26 compounds, including phenolics, flavonoids and coumarins in varying amounts. Hydroxycoumarins, esculetin, esculin, fraxetin, fraxin, fraxidin and scopoletin were isolated from blue, black and Manchurian ashes. High-throughput metabolomics revealed 35 metabolites, including terpenes, secoiridoids and lignans. Metabolomic profiling indicated several upregulated putative compounds from Manchurian ash, especially fraxinol, ligstroside, oleuropin, matairesinol, pinoresinol glucoside, 8-hydroxypinoresinol-4-glucoside, verbenalin, hydroxytyrosol-1-O-glucoside, totarol and ar-artemisene. Further, dicyclomine, aphidicolin, parthenolide, famciclovir, ar-turmerone and myriocin were identified upregulated in blue ash. Principal component analysis demonstrated a clear separation between Manchurian and blue ashes from black, green, white and pumpkin ashes. The presence of defensive compounds upregulated in Manchurian ash, suggests their potential role in providing constitutive resistance to EAB, and reflects its co-evolutionary history with A. planipennis, where they appear to coexist in their native habitats

    Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis

    No full text
    A challenge in recent years has been the rational use of forest and agriculture residues for the production of bio-fuel, biochemical, and other bioproducts. In this study, potentially useful compounds from pyrolytic lignins were identified by HPLC-MS/MS and untargeted metabolomics. The metabolites identified were 2-(4-allyl-2-methoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-1-propanol, benzyl benzoate, fisetinidol, phenyllactic acid, 2-phenylpropionic acid, 6,3′-dimethoxyflavone, and vanillin. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), trolox equivalent antioxidant capacity (TEAC), and total phenolics content (TPC) per gram of pyrolytic lignin ranged from 14 to 503 mg ascorbic acid equivalents, 35 to 277 mg trolox equivalents, and 0.42 to 50 mg gallic acid equivalents, respectively. A very significant correlation was observed between the DPPH and TPC (r = 0.8663, p ≤ 0.0001), TEAC and TPC (r = 0.8044, p ≤ 0.0001), and DPPH and TEAC (r = 0.8851, p ≤ 0.0001). The polyphenolic compounds in the pyrolytic lignins which are responsible for radical scavenging activity and antioxidant properties can be readily profiled with HPLC-MS/MS combined with untargeted metabolomics. The results also suggest that DPPH, TEAC, and TPC assays are suitable methods for the measurement of antioxidant activity in a variety of pyrolytic lignins. These data show that the pyrolytic lignins can be considered as promising sources of natural antioxidants and value-added chemicals

    The flavonoids of Psiadia Punctulata

    No full text
    Bull.Chem.Soc.Ethiop.,5(1), 37-40 (1991

    The flavonoids of <i>Psiadia Punctulata</i>

    No full text
    Bull.Chem.Soc.Ethiop.,5(1), 37-40 (1991)

    Potassium Source and Biofertilizer Influence K Release and Fruit Yield of Mango (<i>Mangifera indica</i> L.): A Three-Year Field Study in Sandy Soils

    No full text
    Arid degraded soils have a coarse texture and poor organic matter content, which reduces the activity of microorganisms and soil enzymes, and thus the soil quality, plant yield and quality decrease. Potassium solubilizing bacteria (KSB) have been suggested to increase the activity of soil enzymes and increase the release of potassium from natural K-feldspar in the arid degraded soil, and thus potentially reduce the rates of the application of chemical fertilizers. Field studies were conducted for three successive growing seasons in an organic farming system to investigate the effects of K-feldspar and KSB (Bacillus cereus) on K release, soil fertility, and fruit yield of mango plants (Mangifera indica L.). The maximum growth of mango plants was found in the treatments inoculated with KSB. KSB increased soil available N, P, K, and the activity of dehydrogenase and alkaline phosphatase enzymes by 10, 7, 18, 54, and 52%, respectively. KSB increased the fruit yield of mango by 23, 27, and 23% in the first, second, and third growing seasons, respectively. The partial (up to 50%) substitution of chemical K-fertilizer with K-feldspar gave fruit yield and quality very close to that fertilized with the full chemical K-fertilizer. The release rate of K (over all the treatments) varied between 0.18 and 0.64 mg kg−1 of soil per day. KSB significantly increased the K release rate. The application of chemical K-fertilizer gave the highest K release, while substitution with K-feldspar reduced the release of K. Natural K-feldspar contains 8.2% K but is poorly soluble when applied alone. KSB increased the soil quality parameters and enhanced the growth and quality of mango fruit. The fruit yield of mango, under KSB inoculation and fertilization with different K sources, ranged between 9.14 to 17.14 t ha−1. The replacement of 50% of chemical K-fertilizer with natural K-feldspar caused a decrease in the fruit yield by 17, 8, and 2.7% in the first, second, and third years, respectively. The substitution of chemical K-fertilizer with K-feldspar up to 50% with KSB is a good strategy to reduce the excessive use of chemical K-fertilizer. B. cereus and natural K-feldspar have the potential to improve soil health and mango plant productivity in low fertile arid soils
    corecore