6 research outputs found

    Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain

    Get PDF
    The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain (PDF Download Available). Available from: https://www.researchgate.net/publication/7599669_Slit-mediated_repulsion_is_a_key_regulator_of_motor_axon_pathfinding_in_the_hindbrain [accessed Jul 11, 2017]

    Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells

    No full text
    Myelinating Schwann cells express the gap junction protein, connexin (Cx)32, which is present at the nodes of Ranvier and Schmidt-Lantermann incisures (Bergoffen et al. [1993] Science (Wash. ) 262:2039-2042). Following peripheral nerve injury, other members of the connexin gene family are also expressed (Chandross et al. [1996a] Mol. Cell. Neurosci. 7:501-518). This study surveys the connexin(s) expressed by rat sciatic nerve, cultured Schwann cells, and a mouse Schwannoma (TR6 Bc1) cell line. Reverse transcriptase-polymerase chain reaction (RT-PCR) amplification revealed a constitutive expression of mRNA encoding Cx32 and 43 but not Cx26, 37, 40, 45, and 46 in sciatic nerve. Mitogenic stimulation of cultured Schwann cells expressing Cx32 also resulted in the appearance of Cx43 mRNA. Schwannoma cells expressed exclusively Cx43 mRNA. These results were confirmed by Northern blot analysis. Functional gap junctions in cultured Schwann and Schwannoma cells were shown by analysis of the intercellular transfer of Lucifer yellow, although the coupling between primary Schwann cells was weak or undetectable. Treatment of primary Schwann cells with mitogens resulted in extensive dye coupling. An immunohistochemical study of adult sciatic nerve sections demonstrated Cx32 immunoreactivity at the nodes of Ranvier and in Schwann cell bodies. Lower intensity staining of Cx43 along the myelin sheath and Schwann cell bodies was also observed. Indirect immunofluorescent studies of Schwann cells treated with mitogens showed characteristic punctate cell surface staining of Cx43; Cx32 staining was detected mainly intracellularly. These results lead to the conclusion that in addition to the expression of Cx32 by normal adult sciatic nerve, low amounts of Cx43 protein are also present. The implications of the expression of two connexins by Schwann cells in Charcot-Marie-Tooth X-linked disease, a demyelinating peripheral neuropathy, are discussed

    Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain

    No full text
    Axonal projections from the retina to the brain are regulated by molecules including the Slit family of ligands [Thompson, H., Barker, D., Camand, O., Erskine, L., 2006a. Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract. Dev. Biol. 296, 476–484, Thompson, H., Camand, O., Barker, D., Erskine, L., 2006b. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J. Neurosci. 26, 8082–8091]. However, the roles of Slit receptors in mammals, (termed Robos), have not been investigated in visual system development. Here we examined Robo1 and 2 mutant mice and found that Robos regulate the correct targeting of retinal ganglion cell (RGC) axons along the entire visual projection. We noted aberrant projections of RGC axons into the cerebral cortex, an area not normally targeted by RGC axons. The optic chiasm was expanded along the rostro-caudal axis (similar to Slit mutant mice, Plump, A.S., Erskine, L., Sabatier, C., Brose, K., Epstein, C.J., Goodman, C.S., Mason, C.A., Tessier-Lavigne, M., 2002. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232), with ectopic crossing points, and some axons projecting caudally toward the corticospinal tract. Further, we found that axons exuberantly projected into the diencephalon. These defects were more pronounced in Robo2 than Robo1 knockout animals, implicating Robo2 as the predominant Robo receptor in visual system development
    corecore