4 research outputs found

    Research Article A new Informatics Framework for Evaluating the Codon Usage Metrics, Evolutionary Models and Phylogeographic reconstruction of Tomato yellow leaf curl virus (TYLCV) in different regions of Asian countries

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) is a major devastating viral disease, majorly affecting the tomato production globally. The disease is majorly transmitted by the Whitefly. The Begomovirus (TYLCV) having a six major protein coding genes, among them the C1/AC1 is evidently associated with viral replication. Owing to immense role of C1/AC1 gene, the present study is an initial effort to elucidate the factors shaping the codon usage bias and evolutionary pattern of TYLCV-C1/AC1 gene in five major Asian countries. Based on publically available nucleotide sequence data the Codon usage pattern, Evolutionary and Phylogeographic reconstruction was carried out. The study revealed the presence of significant variation between the codon bias indices in all the selected regions. Implying that the codon usage pattern indices (eNC, CAI, RCDI, GRAVY, Aromo) are seriously affected by selection and mutational pressure, taking a supremacy in shaping the codon usage bias of viral gene. Further, the tMRCA age was 1853, 1939, 1855, 1944, 1828 for China, India, Iran, Oman and South Korea, respectively for TYLCV-C1/AC1 gene. The integrated analysis of Codon usage bias, Evolutionary rate and Phylogeography analysis in viruses signifies the positive role of selection and mutational pressure among the selected regions for TYLCV (C1/AC1) gene

    Research Article A New Informatics Framework for Evaluating the Codon Usage Metrics, Evolutionary Models and Phylogeographic Reconstruction of Tomato Yellow Leaf Curl Virus (TYLCV) in Different Regions of Asian Countries

    Get PDF
    Not AvailableTomato yellow leaf curl virus (TYLCV) is a major devastating viral disease, majorly affecting the tomato production globally. The disease is majorly transmitted by the Whitefly. The Begomovirus (TYLCV) having a six major protein coding genes, among them the C1/AC1 is evidently associated with viral replication. Owing to immense role of C1/AC1 gene, the present study is an initial effort to elucidate the factors shaping the codon usage bias and evolutionary pattern of TYLCV-C1/AC1 gene in five major Asian countries. Based on publicly available nucleotide sequence data the Codon usage pattern, Evolutionary and Phylogeographic reconstruction was carried out. The study revealed the presence of significant variation between the codon bias indices in all the selected regions. Implying that the codon usage pattern indices (eNC, CAI, RCDI, GRAVY, Aromo) are seriously affected by selection and mutational pressure, taking a supremacy in shaping the codon usage bias of viral gene. Further, the tMRCA age was 1853, 1939, 1855, 1944, 1828 for China, India, Iran, Oman and South Korea, respectively for TYLCV-C1/AC1 gene. The integrated analysis of Codon usage bias, Evolutionary rate and Phylogeography analysis in viruses signifies the positive role of selection and mutational pressure among the selected regions for TYLCV (C1/AC1) gene.Not Availabl

    Not Available

    No full text
    Not AvailableFoot and mouth disease (FMD) is a major economically important viral disease of cloven-hoofed livestock globally. The FMD virus (FMDV) spreads widely in confined, cool, and humid climatic conditions. Being an RNA virus, FMDV is genetically unstable, and its genome evolution is highly influenced by mutational pressure. The climatic and environmental conditions have a significant impact on mutational pressure. The present study is a primary effort to establish a comprehensive relationship between climatic factors and the molecular evolutionary pattern of serotypes FMDV circulating in India. In this study, isolates of three serotypes (A, Asia 1, and O) were selected from six major climatic zones of India (Montane, Humid subtropical, Tropical wet and dry, Tropical wet, Semi-arid and Arid). Based on the full genome nucleotide sequence data, the codon usage bias, evolutionary and phylogeographic analysis was carried out. The study revealed that the codon use bias indicators in the FMDV serotypes differed significantly depending on the climatic zones. It implies that the selection and mutational pressure influence the codon usage pattern indices, with mutational pressure taking precedence in determining the codon usage bias of the FMDV genome. The tMRCA was estimated to be 1977, 1956, and 1953 for Indian FMD virus serotype-A, Asia 1, and O respectively which is around 32, 60, and 61 years before its actual identification in the field. Based on the evolutionary rates the serotype O is evolving rapidly compare to other serotypes in India. Virus transmission across the region was evident from the phylogeographic analysis. The integrated analysis of codon usage bias, evolutionary rate, and phylogeography analysis signifies the major role of mutational and selection pressure, implying that the FMD virus co-evolution and adaptations are highly influenced by climatic/environmental factors.Not Availabl

    Not Available

    No full text
    Not AvailableAngiotensin-converting enzyme 2 (ACE2) is a transmembrane protein that functions as a receptor for coronavirus spike protein. When spike protein fragments as the ligand binds with ACE2 protein, this ACE2 protein functions as a virus receptor, participating in the biological process known as the viral particle entry in the host cell. Hence, an in-silico study was carried out since it is faster and less expensive than trial and error methods based on experimental investigations. To study the effect of Acacia farnesiana phytochemicals on spike protein, molecular docking analyses were carried out. In this study, twelve phytochemicals from Acacia farnesiana have been selected as small molecules based on their ACEI and anti- inflammatory nature to evaluate molecular interaction between spike protein of SARSCoV2 with ACE2 of the human complex molecule. Gallic acid, methyl gallate, kaempferol, Rhamnocitrin, naringenin, apigenin, ellagic acid, ferulic acid, myricetin, Diosmetin, Caffeic acid, and Quercetin were chosen as competent natural compounds from Acacia farnesiana as potent small molecules against COVID-19 and further ADME analysis were carried out. The result indicated that due to the presence of ACEIs and anti-inflammatory phytochemicals in Acacia farnesiana, the bound structure of ACE2 and spike protein becomes unstable. Therefore, these natural compounds can show antiviral activity by destabilizing spike protein binding with the human host ACE2 receptor.Not Availabl
    corecore