16 research outputs found

    Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms

    No full text
    Congenital tufting enteropathy (CTE) is an autosomal recessive disease of infancy that causes severe intestinal failure with electrolyte imbalances and impaired growth. CTE is typically diagnosed by its characteristic histological features, including villous atrophy, crypt hyperplasia and focal epithelial tufts consisting of densely packed enterocytes. Mutations in the EPCAM and SPINT2 genes have been identified as the etiology for this disease. The significant morbidity and mortality and lack of direct treatments for CTE patients demand a better understanding of disease pathophysiology. Here, the latest knowledge of CTE biology is systematically reviewed, including clinical aspects, disease genetics, and research model systems. Particular focus is paid to the pathogenesis of CTE and predicted mechanisms of the disease as these would provide insight for future therapeutic options. The contribution of intestinal homeostasis, including the role of intestinal cell differentiation, defective enterocytes, disrupted barrier and cell–cell junction, and cell-matrix adhesion, is vividly described here (see Graphical Abstract). Moreover, based on the known dynamics of EpCAM signaling, potential mechanistic pathways are highlighted that may contribute to the pathogenesis of CTE due to either loss of EpCAM function or EpCAM mutation. Although not fully elucidated, these pathways provide an improved understanding of this devastating disease

    Transcriptional Read-Through Induction Treatment Trial in Intestinal Failure Induced by an EpCAM

    No full text
    Congenital tufting enteropathy (CTE) is a rare autosomal recessive diarrheal disorder where epithelial tufts can be present from the duodenum to the large intestine. CTE has been linked to mutations in the epithelial cell adhesion molecule gene (EpCAM) Sivagnanam et al. (2008). We recently reported the first case with a nonsense mutation in EpCAM Sivagnanam et al. (2010). Here, we explored the clinical and molecular effects of enterally administered gentamicin in this CTE patient. Altogether, our findings indicate that the therapy employed was insufficient to produce notable read-through induction of the EpCAM premature termination codon. This report highlights the utility of genetic testing not only in respect of diagnostics, prognostics, and family planning, but potential mutation-specific therapeutic considerations as well

    Functional consequences of EpCam

    No full text
    corecore