2,884 research outputs found

    Charge migration mechanisms in the DNA at finite temperature revisited; from quasi-ballistic to subdiffusive transport

    Full text link
    Various charge migration mechanisms in the DNA are studied within the framework of the Peyrard-Bishop-Holstein model which has been widely used to address charge dynamics in this macromolecule. To analyze these mechanisms we consider characteristic size and time scales of the fluctuations of the electronic and vibrational subsystems. It is shown, in particular, that due to substantial differences in these timescales polaron formation is unlikely within a broad range of temperatures. We demonstrate that at low temperatures electronic transport can be quasi-ballistic. For high temperatures, we propose an alternative to polaronic charge migration mechanism: the fluctuation-assisted one, in which the electron dynamics is governed by relatively slow fluctuations of the vibrational subsystem. We argue also that the discussed methods and mechanisms can be relevant for other organic macromolecular systems, such as conjugated polymers and molecular aggregates

    KMS states on Quantum Grammars

    Get PDF
    We consider quantum (unitary) continuous time evolution of spins on a lattice together with quantum evolution of the lattice itself. In physics such evolution was discussed in connection with quantum gravity. It is also related to what is called quantum circuits, one of the incarnations of a quantum computer. We consider simpler models for which one can obtain exact mathematical results. We prove existence of the dynamics in both Schroedinger and Heisenberg pictures, construct KMS states on appropriate C*-algebras. We show (for high temperatures) that for each system where the lattice undergoes quantum evolution, there is a natural scaling leading to a quantum spin system on a fixed lattice, defined by a renormalized Hamiltonian.Comment: 22 page

    Dynamics of Triangulations

    Full text link
    We study a few problems related to Markov processes of flipping triangulations of the sphere. We show that these processes are ergodic and mixing, but find a natural example which does not satisfy detailed balance. In this example, the expected distribution of the degrees of the nodes seems to follow the power law d4d^{-4}

    On the functions counting walks with small steps in the quarter plane

    Get PDF
    Models of spatially homogeneous walks in the quarter plane Z+2{\bf Z}_+^{2} with steps taken from a subset S\mathcal{S} of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)Q(x,y;z)(x,y,z)\mapsto Q(x,y;z) of the numbers q(i,j;n)q(i,j;n) of such walks starting at the origin and ending at (i,j)Z+2(i,j) \in {\bf Z}_+^{2} after nn steps is studied. For all non-singular models of walks, the functions xQ(x,0;z)x \mapsto Q(x,0;z) and yQ(0,y;z)y\mapsto Q(0,y;z) are continued as multi-valued functions on C{\bf C} having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C2{\bf C}^2, the interval ]0,1/S[]0,1/|\mathcal{S}|[ of variation of zz splits into two dense subsets such that the functions xQ(x,0;z)x \mapsto Q(x,0;z) and yQ(0,y;z)y\mapsto Q(0,y;z) are shown to be holonomic for any zz from the one of them and non-holonomic for any zz from the other. This entails the non-holonomy of (x,y,z)Q(x,y;z)(x,y,z)\mapsto Q(x,y;z), and therefore proves a conjecture of Bousquet-M\'elou and Mishna.Comment: 40 pages, 17 figure

    Charge transfer mechanisms in DNA at finite temperatures: from quasiballistic to anomalous subdiffusive charge transfer

    Get PDF
    We address various regimes of charge transfer in DNA within the framework of the Peyrard-Bishop-Holstein model and analyze them from the standpoint of the characteristic size and timescales of the electronic and vibrational subsystems. It is demonstrated that a polaron is an unstable configuration within a broad range of temperatures and therefore polaronic contribution to the charge transport is irrelevant. We put forward an alternative fluctuation-governed charge transfer mechanism and show that the charge transfer can be quasi -ballistic at low temperatures, diffusive or mixed at intermediate temperatures, and subdiffusive close to the DNA denaturation transition point. Dynamic fluctuations in the vibrational subsystem is the key ingredient of our proposed mechanism which allows for explanation of all charge transfer regimes at finite temperatures. In particular, we demonstrate that in the most relevant regime of high temperatures (above the aqueous environment freezing point), the electron dynamics is completely governed by relatively slow fluctuations of the mechanical subsystem. We argue also that our proposed analysis methods and mechanisms can be relevant for the charge transfer in other organic systems, such as conjugated polymers, molecular aggregates, alpha-helices, etc

    Binary Collisions and the Slingshot Effect

    Full text link
    We derive the equations for the gravity assist manoeuvre in the general 2D case without the constraints of circular planetary orbits or widely different masses as assumed by Broucke, and obtain the slingshot conditions and maximum energy gain for arbitrary mass ratios of two colliding rigid bodies. Using the geometric view developed in an earlier paper by the authors the possible trajectories are computed for both attractive or repulsive interactions yielding a further insight on the slingshot mechanics and its parametrization. The general slingshot manoeuvre for arbitrary masses is explained as a particular case of the possible outcomes of attractive or repulsive binary collisions, and the correlation between asymptotic information and orbital parameters is obtained in general.Comment: 12 pages, 7 figures, accepted for publication Dec'07, Celestial Mechanics and Dynamical Astronom

    Growth of uniform infinite causal triangulations

    Full text link
    We introduce a growth process which samples sections of uniform infinite causal triangulations by elementary moves in which a single triangle is added. A relation to a random walk on the integer half line is shown. This relation is used to estimate the geodesic distance of a given triangle to the rooted boundary in terms of the time of the growth process and to determine from this the fractal dimension. Furthermore, convergence of the boundary process to a diffusion process is shown leading to an interesting duality relation between the growth process and a corresponding branching process.Comment: 27 pages, 6 figures, small changes, as publishe
    corecore